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Abstract

In this paper we analyze the connections among different parametric settings in which the stability theory for linear inequality
systems may be developed. Our discussion is focussed on the existence, or not, of an index set (possibly infinite). For some stability
approaches it is not convenient to have a fixed set indexing the constraints. This is the case, for example, of discretization techniques
viewed as approximation strategies (i.e., discretization regarded as data perturbation). The absence of a fixed index set is also a key
point in the stability analysis of parametrized convex systems via standard linearization. In other frameworks the index set is very
useful, for example if the constraints are perturbed one by one, even to measure the global perturbation size. This paper shows to
what extent an index set may be introduced or removed in relation to stability.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

This paper is concerned with different frameworks in which the stability of a given linear inequality system (with
possibly infinitely many constraints) may be analyzed. Specifically, we deal with three different frameworks: normalized
parametric context with index set T, parametric context with index set T, and general parametric context, abbreviated
by NP(T ), P(T ) and GP, respectively.

In context NP(T ) we consider a ‘normalized’ parametrization in the sense that it obeys to a certain pattern. Indeed,
once the index set T is selected, both the space of parameters and the mapping assigning linear systems to parameters
are prescribed. Formally, when we are confined to context NP(T ), we consider the set � of all the systems in the form

� := {a′
t x�bt , t ∈ T }, (1)

where T is an arbitrary, but fixed, set of indices, x and at belong to Rn, bt ∈ R, and y′ denotes the transpose of y ∈ Rn.
When T is infinite we are dealing with linear semi-infinite systems. The functions t �→ at and t �→ bt have no particular
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property and, so, � ≡ (Rn × R)T. Actually, in this context, (Rn × R)T is the parameter space which is identified with
the set of systems �. Moreover, a natural bijection is considered, which assigns to each parameter (

at

bt
)t∈T ∈ (Rn ×R)T

the linear system {a′
t x�bt , t ∈ T }. In this context, each coefficient may be independently perturbed, giving rise to a

perturbed system with the same number (cardinality) of constraints. It follows the classical approach of Robinson [21]
in the sense that arbitrary perturbations of all the coefficients are considered. The size of the perturbation is measured
by the extended distance d : � × � → [0, +∞] given by

d(�1, �) = sup
t∈T

∥∥∥∥
(

a1
t

b1
t

)
−

(
at

bt

)∥∥∥∥∞
, (2)

where �1 := {(a1
t )

′x�b1
t , t ∈ T }, and ‖ · ‖∞ denotes the Chebyshev norm in any finite-dimensional Euclidean space.

In this way, � is endowed with the uniform convergence topology.
Roughly speaking, context NP(T ) provides a theoretical setting for modeling those situations in which systems

have coefficients whose values either are only approximately known or they have to be rounded off in the computing
process. Therefore, we may be actually considering a different system, �1, proximal to the original one. The stability
theory in this framework has been studied in several papers (e.g., [4,7,12,14,15]). The continuous case, i.e., when T is
assumed to be a compact Hausdorff space and (

at

bt
) depends continuously on t ∈ T , has been analyzed in [2,9]. Some

stability results for structurally richer contexts can also be traced out from the literature, for instance, by requiring
differentiability assumptions; see, for instance, Jongen et al. [18], for the case of C1 data.

A different parametric context arises by considering the family of systems in the form

�� := {at (�)′x�bt (�), t ∈ T }, (3)

where the parameter � runs over an arbitrary metric space (�, d) and, for each t ∈ T , the function � �→ (
at (�)
bt (�)

) is
continuous on �. We shall refer to this parametric context as P(T ). This parametric approach may be used to describe
models in which only specific perturbations of specific coefficients are allowed. In this framework perturbations fall on
the parameter and, when T is infinite, a small perturbation of the parameter � may cause a large perturbation in some
coefficients of the original system. This fact provokes that the stability theory of the feasible set in context P(T ) is
notably different from the one in NP(T ), as it is emphasized in [6]. This approach is followed by authors as Zlobec [24]
in the finite case, i.e, T finite (see also [19] which includes the semi-infinite case), and Jongen and Stein [17], confined
to the context of parametrized families of problems with C1 data.

A special case of parametrized systems (3) comes from the field of the so-called multiparametric programming,
where the parameter ranges on Rk . In this framework, parametric programming techniques systematically subdivide
the parameter space into characteristic regions where the optimal value and an optimizer are given as explicit functions
of the parameters. As it is pointed out in Filippi [8], in recent years a new interest in multiparametric programming arose
from so-called model predictive control, a well-known technique in the system theory and optimal control community.
The pioneer work of Gal and Nedoma [11] introduces a general and systematic procedure to solve a multiparametric
right-hand side linear programming problem. See Gal [10] for a vast bibliography on parametric linear programming,
updated to the early 1990s.

Context GP is concerned with the case in which ‘the whole system’ may present perturbations: a perturbed system
may have even a different amount of constraints. The situation may be modeled by including dependence on the
parameter for the index set (see again [19,24]) or with no index set. In this last case each linear inequality system is
directly identified with the subset of Rn+1 formed by the coefficient vectors of the constraints. This broad scope context
GP can be formalized through the concept of mapping of parametrized systems, defined as follows (see [6]):

Definition 1. Let � be an arbitrary metric space, which will be considered as the parameter space. We define a mapping
of parametrized systems as a set-valued mapping � : � ⇒ Rn+1, assigning to each parameter � a subset �(�) of Rn+1,
which can be identified with the linear inequality system

�� :=
{
a′x�b,

(
a

b

)
∈ �(�)

}
.

Context GP becomes the natural framework for modeling different situations. At this moment we point out the case of
parametrized convex inequality systems, when the ‘standard linearization’ (by means of subdifferentials) is considered.
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