
Journal of Computational and Applied Mathematics 224 (2009) 581–591

Contents lists available at ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

Biorthogonal radial multiresolution in dimension threeI

Li Cui a, Lizhong Peng b,∗
a School of Mathematical Sciences, Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing Normal University, Beijing 100875, China
b LMAM, School of Mathematical Sciences, Peking University, Beijing 100871, China

a r t i c l e i n f o

Article history:
Received 27 November 2007
Received in revised form 16 May 2008

MSC:
42C40
43A62
42A38

Keywords:
Radial multiresolution analysis
Biorthogonal wavelets

a b s t r a c t

In this paper, we present the definition and the relative theorems of the biorthogonal radial
multiresolution in dimension three. Unlike the orthogonal case, there exist real-valued
dual radial scaling functionswith compact support in the biorthogonal case. The associated
Mallat algorithm can be simply performed in terms of classical biorthogonal filters.
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1. Introduction

Based on classicalmultiresolution analysis (MRA) in Euclidean spaceRn, wavelets have beendeveloped inmanybranches,
such as orthogonal wavelets, biorthogonal wavelets, frames, multi-wavelets, field wavelets, wavelets packages and lifting,
etc. The compact support, symmetry and high order vanishing moments of the wavelets are always expected to be good
and important properties. However in the orthonormal case, there do not exist real-value compactly supported scaling and
wavelet functions with symmetry or antisymmetry (excepted Haar basis) [2,4]. To recover the symmetry, many approaches
are put forward, such as biorthogonal wavelets, m-band wavelets and vector wavelets, etc.
For the analysis of the radially symmetric functions, the key is to exploit this symmetry in the construction of the

corresponding wavelet transforms in order to reduce the computational effort. The radial property would naturally occur
when separating variables in polar coordinates and treating the spherical and radial parts separately. There ismuch literature
dealing with multiresolution analysis on spheres, (see e.g. [1] and the references therein). The continuous radial wavelet
analysis has been established based on the convolution structure of the radial functions instead of the usual translation in
Rd (see e.g. [7,8,10]). Essentially the same concept is underlying the approach of Epperson and Frazier, where the radial
wavelet expansions inRd are constructed. Sampling lattices with spatial discretization are determined by the positive zeros
of the related Type-I Bessel functions [5]. The spatial lattice is equidistant only in the special cases d = 1 and d = 3.
There seems to be no general rigorous approach available for the construction of orthogonal radial wavelets in arbitrary
dimensions, although radial multiresolution analysis has been considered in some special cases. In [9], Holger Rauhut and
Margit Rösler construct radial multiresolution analysis and orthonormal radial wavelets inR3, which contains almost all the
results of the classical MRA. Additionally they present a concise characterization of the radial scaling function in terms of
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the even classical scaling function onR. In particular, it implies that there do not exist any real-valued compactly supported
orthonormal radial scaling function similar to the classical case. In this paper, we improve the above result to biorthogonal
radialmultiresolution. In the biorthogonal case, it is possible to obtain real-valued dual radial scaling functionswith compact
support. Radial filters and the Mallat algorithm could be represented by the classical biorthogonal filters, which is not
of concern in the orthogonal case in [9]. Furthermore as an example, the 9/7 biorthogonal radial wavelets with compact
support are shown.
This paper is organized as follows. In Section 2, we recall radial multiresolution analysis in R3 and some notations. In

Section 3, we present biorthogonal radial multiresolution analysis and establish its construction method from the classical
biorthogonal MRA. For example, we give the biorthogonal 9/7 radial scaling function and wavelets. Finally, the Mallat
decomposition and reconstruction algorithms are discussed, where radial filters are easily obtained from classical filters.

2. Radial multiresolution analysis

The group SO(d) denotes the set of rotations of d-dimension space. Suppose F ∈ L2(Rd) is radial, i.e. F(Ax) = F(x) a.e. for
all A ∈ SO(d). Then there is a unique f ∈ L2(R+, ωd/2−1) such that F(x) = f (|x|), where | · | denotes the Euclidean norm on
Rd. For α ≥ 0, the measure ωα on R+ = [0,∞) is defined by

dωα(r) = (2αΓ (α + 1))−1r2α+1dr.

It implies that ‖F‖2 = ‖f ‖2,ωd/2−1 , where ‖ · ‖2 is taken with respect to the normalized Lebesgue measure (2π)
−d/2dx onRd.

For f ∈ L2(Hα) := L2(R+, ωα), the Hankel transform is defined by

f̂ α(λ) =
∫
∞

0
jα(λr)f (r)dωα(r),

where the normalized Bessel function jα(z) is

jα(z) = Γ (α + 1)(z/2)−α Jα(z), Jα(z) =
∞∑
n=0

(−1)n(z/2)2n+α

n!Γ (n+ α + 1)
.

Plancherel Theorem of the Hankel transform holds, which states f 7→ f̂ α is a self-inverse and isometric isomorphism of
L2(Hα). If F ∈ L2(Rd) is radial with F(x) = f (|x|), then its Fourier transform is also radial with F (F)(ξ) = f̂ (d/2−1)(|ξ |). It is
due to the fact that

jd/2−1(|z|) =
∫
Sd−1
e−i〈z,ξ〉dσ(ξ),

where dσ denotes the spherical surface measure normalized according to dσ(Sd−1) = 1. In contrast, the usual group
translation x 7→ F(x + y), y ∈ Rd, will no longer be radial (apart from trivial cases). However, the translation on the
spherical means

MTrF(x) :=
∫
Sd−1
F(x+ rξ)dσ(ξ), r ∈ R+.

The translation of F are again radial. Moreover, ‖MTrF‖2 ≤ ‖F‖2. Thus MTr induces a norm-increasing linear mapping
Tr : L2(Hd/2−1) −→ L2(Hd/2−1) defined by

Tr f (|x|) := MTrF(x),

where f and F are defined as above. Let α = d/2− 1, then

Tr f (s) = Cα

∫ π

0
f (
√
r2 + s2 − 2rs cosϕ) sin2α ϕdϕ, (1)

with Cα = Γ (α+1)
Γ (α+1/2)Γ (1/2) . For α = d/2 − 1 or general α ≥ −1/2, it defines a norm-decreasing generalized translation on

L2(Hα), which is different from the classical case (see [6]).
The dilation operator Da in L2(Hα) is a linear operator defined by

Daf (r) :=
1
aα+1

f
( r
a

)
, a > 0.

Radial multiresolution analysis in R3 associated with the Bessel-Kingman hypergroup Hα with α = 1/2 has been
discussed in [9]. In this paper, we continue to use the notations in [9], i.e.

dω(r) := dω1/2(r) =

√
2
π
r2dr, f̂ := f̂ 1/2, j(r) := j1/2(r) =

sin(r)
r

.
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