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a b s t r a c t

Computing Google’s PageRank via lumping the Google matrix was recently analyzed in
[I.C.F. Ipsen, T.M. Selee, PageRank computation, with special attention to dangling nodes,
SIAM J. Matrix Anal. Appl. 29 (2007) 1281–1296]. It was shown that all of the dangling
nodes can be lumped into a single node and the PageRank could be obtained by applying
the power method to the reduced matrix. Furthermore, the stochastic reduced matrix had
the same nonzero eigenvalues as the full Google matrix and the power method applied to
the reduced matrix had the same convergence rate as that of the power method applied to
the full matrix. Therefore, a large amount of operations could be saved for computing the
full PageRank vector.
In this note, we show that the reduced matrix obtained by lumping the dangling nodes

can be further reduced by lumping a class of nondangling nodes, calledweakly nondangling
nodes, to another single node, and the further reduced matrix is also stochastic with the
same nonzero eigenvalues as the Google matrix.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

With the booming development of the Internet, web search engines have become the most important Internet tools for
retrieving information. Among thousands of web search engines based on various algorithms that have emerged in recent
years, Google has become the most popular and successful one. Google’s success should largely be attributed to its simple
but elegant algorithm: PageRank. The core of the PageRank algorithm involves computing the PageRank vector, which is the
stationary distribution of the so-calledGooglematrix and ameasurement of the importance of thewebpages. The dimension
of the Google matrices exceeds 11.5 billion, so only a small set of algorithms for computing its stationary distribution can
be applied.
A number of numerical methods have been studied for computing the PageRank vector. In spite of its low efficiency,

the simple power method stands out for its stable and reliable performances (cf. [16]). To remedy the slow convergence
of the power method, some acceleration techniques have been proposed, which include extrapolation [2,4,8,10],
aggregation/disaggregation [7,9,12], lumping [15], adaptive methods [9]. Moreover, an Arnoldi-type method has been
considered [3]; the power–Arnoldi algorithm can be found in [18]. The Jordan canonical form of the Google matrix has
been investigated in [19,20].
We review the original ideal of Google’s PageRank [16]. On the basis of the hyperlink structure of the web, the web can

be viewed as a direct graph, in which each of the n pages is a node and there is an edge for node i to node j if there is a link
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from node i to node j. The elements of the n× n hyperlink matrix P are defined as follows:

pij ≡


1
|Oi|

, if page i links to page j,

0, otherwise,

where the scalar |Oi| is the number of outlinks from page i. Thus, each of the nonzero rows of P sums to 1. These pages,
which have no outlinks to other pages, are called dangling nodes. Let k be the number of nondangling nodes. If the rows
and columns of P are permuted (i.e., the indices are reordered) so that the rows corresponding to dangling nodes are at the
bottom of the hyperlink matrix P , then P is of the following form:

P =
[
P11 P12
0 0

]
,

where the k×kmatrix P11 represents the links among the nondangling nodes, and P12 represents the links fromnondangling
to dangling nodes. The n− k zero rows in P are associated with the n− k dangling nodes.
To make P a transition probability matrix, it is modified as

P̂ ≡ P + dwT,

where w is an n-dimensional stochastic vector (i.e., w ≥ 0 and ‖w‖ = 1) and dT = [0T, eT]. Here, the zero vector is k-
dimensional and eT = [1, 1, . . . , 1]. In [6], the vectorw is called the dangling node vector. Note that the transition probability
matrix P̂ is usually reducible, and therefore its stationary distribution is not unique. To remedy this, and thereby guarantee
the existence and uniqueness of the stationary distribution vector, a further modification of P̂ is made as follows:

G = αP̂ + (1− α)evT,

where α ∈ [0, 1) and v, which is called a personalization vector, is also an n-dimensional stochastic vector. The stochastic
matrix G is usually called the Google matrix. The PageRank vector π is the stationary distribution vector of G, i.e., πT = πTG,
π ≥ 0 and ‖π‖ = 1. Here and in the sequel, ‖ · ‖ denotes the 1-norm. Although the Google matrix Gmay not be primitive
or irreducible, its eigenvalue 1 is distinct and the magnitude of all other eigenvalues is bounded by α [5,17], and therefore
the PageRank vector is unique.
After partitioningw and v aswT = [wT1, w

T
2] and v

T
= [vT1, v

T
2]withw1, v1 being k× 1 andw2, v2 being (n− k)× 1, the

Google matrix has the following block structure:

G =
[
G11 G12
euT1 euT2

]
,

where

G11 ≡ αP11 + (1− α)evT1, G12 ≡ αP12 + (1− α)evT2,

u ≡ αw + (1− α)v =
[
u1
u2

]
=

[
αw1 + (1− α)v1
αw2 + (1− α)v2

]
.

Note that u1 = v1 and u2 = v2 if the dangling vector equals the personalization vector.
For an extensive exposition of the PageRank problem, see the survey papers [1,13] and the book [14].
Recently, Ipsen and Selee [6] have shown that all of the dangling nodes can be lumped into a single node and the PageRank

of the nondangling nodes can be computed separately from that of the dangling nodes. They have presented a simple
algorithm, which applies the power method to the smaller lumped matrix and has the same convergence rate as that of
the power method applied to the full matrix G, for computing the PageRank vector π .
The following important results, which we will make use of, are given in [6].

Theorem 1.1 ([6]).With the above notation, let

X ≡
[
Ik 0
0 L

]
,

where L ≡ In−k − 1
n−k êe

T and ê = e− e1 = [0, 1, 1, . . . , 1]T. Then

XGX−1 =
[
G(1) ∗
0 0

]
,

where

G(1) =
[
G11 G12e
uT1 uT2e

]
.

The matrix G(1) is stochastic of order k+ 1 with the same nonzero eigenvalues as G.



Download English Version:

https://daneshyari.com/en/article/4641674

Download Persian Version:

https://daneshyari.com/article/4641674

Daneshyari.com

https://daneshyari.com/en/article/4641674
https://daneshyari.com/article/4641674
https://daneshyari.com

