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a b s t r a c t

A system of fractional evolution equations results from employing the tool of the Fractional
Calculus and following the method used by Dirac to obtain his well-known equation from
Klein–Gordon’s one. It represents a possible interpolation between Dirac and diffusion and
wave equations in one space dimension.
In this paper some analytical properties typical of the general solution of this

system of equations are obtained and necessary stability bounds for a numerical scheme
approximating such equations are found, through the classical discrete VonNeumann-type
analysis.
The non-local property of the time fractional differential operator leads to discretiza-

tions in terms of series. Here, the analytical methods, usually employed in the study of the
stability of discrete schemes when dealing with integer order differential equations, have
been adapted to the complexity of the real order case.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we will consider a generalization of the linear one-dimensional diffusion and wave equations, that we
call ‘‘fractional evolution Dirac-like equations’’. They are obtained by combining the fractional derivatives and the internal
degrees of freedom associated to a system, as we will explain below.
The Fractional Calculus (see [4,14,15], for example) deals with the theory of real (or imaginary) order integral and

differential operators and it represents a natural instrument to model non-local phenomena, either in space or time,
involving different scales.
The general fractional derivative in the variable x can be denoted by Dαx , where α > 0, α ∈ R, and it must coincide with

the classical derivatives for integer orders α. Many different definitions have been proposed in the literature, all preserving
this property. Here, we will refer to two of them, especially employed in the mathematical and physical fields.
The first is the Riemann–Liouville fractional derivative of order α > 0, α ∈ R (see [15], for example) of a function f given

in [a, b], where [a, b] ⊂ R, n ∈ N, n = −[−α] and x > a:

(RLa D
α
x f )(x) =

dn

dxn
1

Γ (n− α)

∫ x

a

f (τ )
(x− τ)α−n+1

dτ . (1)

The second one is the Caputo fractional derivative, which can be considered as a regularised version of the previous
definition, since it takes the form

(CaD
α
x f )(x) =

1
Γ (n− α)

∫ x

a

f n(τ )
(x− τ)α−n+1

dτ . (2)

E-mail address: teresa_pierantozzi@mat.ucm.es.

0377-0427/$ – see front matter© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.cam.2008.05.032

http://www.elsevier.com/locate/cam
http://www.elsevier.com/locate/cam
mailto:teresa_pierantozzi@mat.ucm.es
http://dx.doi.org/10.1016/j.cam.2008.05.032


T. Pierantozzi / Journal of Computational and Applied Mathematics 224 (2009) 284–295 285

The following relation between the above definitions holds:

(CaD
α
x f )(x) = (

RLDαa+ f )(x)−
n−1∑
j=0

f (j)(a+)
Γ (1+ j− α)

(x− a)j−α, (3)

and a sufficient condition under which both derivatives exist is f ∈ ACn−1(a, b) and f n(x) ∈ L1(a, b). Property (3) allows to
establish the equivalence between null fractional and classical initial conditions. In fact, if (3) is valid, then:

(RLDαa+ f )(a+) = 0 ⇐⇒ f (j)(a+) = 0, j = 0, 1, 2, . . . , n− 1. (4)

Among the most important differences between the Riemann–Liouville and the Caputo type derivative is the fact that
the first one is not zero when calculated on a constant function, whereas the second one is. This analogy with the classical
derivative represents one of the main motivations which led Caputo in 1967 [1] to introduce in his studies about applied
problems the operator (2) as an alternative to the Riemann–Liouville operator.
Another important distinction between the Riemann-Lioville and the Caputo operator is their behavior under the Laplace

transform. In fact, assuming certain restrictions on the function f (t) : R+ → C such that the following expressions exist, it
results:∫

∞

0
e−st

(
(RLDα0 f )(t)

)
dt = sα(Lt f )(s)−

n−1∑
k=0

sk(RLDα−k−10 f )(0), (5)

∫
∞

0
e−st

(
(CDα0 f )(t)

)
dt = sα(Lt f )(s)−

n−1∑
k=0

sα−k−1f (k)(0), (6)

where s ∈ C andLt f is the Laplace transform of the function f .
Property (6) allows us to employ initial conditions of the classical typewith the usual interpretationwhen solving applied

problems through the Laplace transform, which is one of the most recurring method in the physical field due to its easy of
use.
Let us now define the fractional evolution Dirac-like equations. It is important to highlight that in the construction of

such a generalization of the linear one dimensional diffusion and wave equations, the definition of the fractional operator
does not need to be specified from the very beginning. In fact, we will just have to know the fractional operator we are
referring to when we want to calculate the solutions of the corresponding specific fractional evolution equations.
As it is known, the free Dirac equation is, in some sense, the square root of the Klein–Gordon equation (see, e.g., [17]).

Similarly, we can consider a kind of square root of the following fractional diffusion equation in one space dimension:

(D2αt u)(t, x)− λ
2∂xxu(t, x) = 0, (7)

which has been widely studied in the literature (see [7–10,16], for example).
To do that, let us consider the general system of fractional evolution Dirac-like equations(

ADαt + λB∂x
)
v(t, x) = 0, v(t, x) =

(
u1(t, x)
u2(t, x)

)
, (8)

with 0 < α ≤ 1, α ∈ R, λ ∈ R, λ 6= 0 and where A and B are 2× 2 matrixes satisfying the Pauli’s algebra:

A2 = I, B2 = −I, AB+ BA = 0 (9)

and I is the identity matrix.
Each component of the solution v(t, x) also solves (7) provided the index property

(DtαDtα)v(t, x) = Dt2αv(t, x) (10)

holds.
Actually, under the assumption (10), it turns out that:(

ADαt + λB∂x
)
v(t, x) = 0 H⇒(

ADαt + λB∂x
)2 v(t, x) = {(D2αt u1)(t, x)− λ2∂xxu1(t, x) = 0

(D2αt u2)(t, x)− λ
2∂xxu2(t, x) = 0.

(11)

Observe that, for the fractional Riemann–Liouville and Caputo derivatives the semigroup property (10) occurs when
v(0, x) = 0.
In fact, the following proposition holds (see, e.g., [14,15]):
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