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a b s t r a c t

We approximate weighted integrals over Euclidean space by using shifted rank-1 lattice
rules with good bounds on the ‘‘generalisedweighted star discrepancy’’. This version of the
discrepancy corresponds to the classic L∞ weighted star discrepancy via a mapping to the
unit cube. Theweights here are generalweights rather than the productweights considered
in earlier works on integrals over Rd. Known methods based on an averaging argument
are used to show the existence of these lattice rules, while the component-by-component
technique is used to construct the generating vector of these shifted lattice rules. We prove
that the bound on the weighted star discrepancy considered here is of order O(n−1+δ) for
any δ > 0 andwith the constant involved independent of the dimension. This convergence
rate is better than theO(n−1/2) achieved so far for bothMonte Carlo and quasi-Monte Carlo
methods.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

We consider integrals over Euclidean space given by

Id(f , ρ) =
∫

Rd
f (x)ρ(x) dx, (1)

where ρ(x) is a probability density function. Hence ρ(x) ≥ 0 for any x ∈ Rd and
∫

Rd ρ(x) dx = 1. We also assume that the
probability density ρ(x) has the product form

ρ(x) =
d∏
j=1

ρj(xj),

where each ρj is a probability density over R. For simplicity we shall assume that all the densities ρj are equal, however the
results can be extended in the case when these densities are different for each coordinate direction.
Integrals over unbounded regionsmay be studied by first employing amapping to the unit cube (see [1–3]) and then con-

structing a shifted lattice rule over the unit cube (see [4,5]). In the 1-dimensional case, we can use the following transform:

u = Φ(x) =
∫ x

−∞

ρ(t) dt, ∀x ∈ R. (2)

The inverse mapping will be Φ−1 : (0, 1)→ R, Φ−1(u) = x. In the d-dimensional case, the mapping (2) will be applied
to each coordinate direction. So, if we take x = (x1, x2, . . . , xd) ∈ Rd, thenΦ(x) = (Φ(x1),Φ(x2), . . . ,Φ(xd)). In the same
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manner, the inverse mapping will also be applied component-wise. The integral (1) will thus become

Id(f , ρ) =
∫
[0,1]d

f (Φ−1(u)) du =
∫
[0,1]d

g(u) du := Id(g),

where g = f ◦ Φ−1, with the composition of f withΦ−1 applied for each coordinate direction. Integrals over the unit cube
might be approximated by quadrature rules of the form

Qn,d(g) =
1
n

n−1∑
k=0

g(wk) =
1
n

n−1∑
k=0

f (tk),

where wk ∈ [0, 1]d, for all 0 ≤ k ≤ n − 1 and tk = Φ−1(wk) ∈ Rd for all 0 ≤ k ≤ n − 1 with the inverse mapping Φ−1
applied component-wise.
In this paper we are interested in constructing shifted rank-1 lattice rules suitable for integrals of the form (1) by using a

weighted star discrepancy as a criterion of goodness. It is common that mappings of the form (2) lead to integrands that are
unbounded near the boundary of the unit cube, and usually shifted lattice rules are employed in order to avoid evaluation
at the singularities. Such shifted rank-1 lattice rules are quadrature rules of the form

Qn,d(g) =
1
n

n−1∑
k=0

g
({
kz
n
+∆

})
, (3)

where z is the generating vector having all the components assumed to be relatively primewith n and∆ ∈ [0, 1)d is the shift.
Shifted lattice rules suitable for integrals over unbounded regions have beenpreviously constructed in [4,5]. However in both
of these papers it was assumed that the weights have a ‘‘product’’ form (see the next section for details on weight settings).
The purpose of the present paper is to construct shifted lattice rules for integrals of the form (1) in a ‘‘general weighted’’
setting. Such a weight setting was used in [6], where rank-1 lattice rules having a low weighted star discrepancy were
constructed and it was also pointed out that the techniques therein could be used for weighted integrands over unbounded
regions, but without effectively presenting such a construction. Since here wemake the same assumptions over the weights
as in [6], this paper is intended to extend the results of [6].
In [4,5], the resulting error had the order of magnitude of O(n−1/2), which is also the typical convergence expected from

a Monte Carlo method. In both of these papers the authors remarked by using numerical experiments that their lattice
rules perform significantly better than Monte Carlo methods, however a mathematical proof of a better convergence than
O(n−1/2) was not given. As we shall see later, the weighted star discrepancy used here in order to assess the goodness
of a shifted lattice rule of the form (3) will have a better convergence order than the convergence observed in [4,5]. This
convergence is the optimal O(n−1+δ) for any δ > 0 and with the involved constant independent of the dimension. Such an
optimal convergence rate has been also obtained for instance in [3,6,7]. We remark that in [3], the authors used a similar
discrepancy as the discrepancy defined below by (5), but under a product weighted assumption and without providing an
explicit construction of the quadrature points. In the present paper, we give an explicit construction andmoreover, we allow
the weights to have more generality than the product weights used in [3]. We also remark that the techniques used here
resemble with the typical techniques used in reproducing kernel Hilbert spaces (used for instance in [4,5]), although there
is no reproducing kernel.
Let us also remark that under a general weighted assumption, there are no results to date in the specialised literature

regarding construction of lattice rules suitable for integrands over unbounded regions, so we also fill a gap in this sense.
Moreover, in the last section we give an extension of the results from [8]. Such an extension is important at the analysis of
the computational costs of the construction algorithm and could be used in further work that employs a similar form of the
quadrature points as here.

2. Generalised weighted star discrepancy

We first mention that the local star discrepancy of a set Pn of n points in the unit cube is defined by

discr(x, Pn) :=
|[0, x) ∩ Pn|

n
−

d∏
j=1

xj,

where x = (x1, x2, . . . , xd) ∈ [0, 1]d. Let now u be an arbitrary non-empty subset of D := {1, 2, . . . , d − 1, d} and let γu

be a non-negative weight associated with u. For the vector x ∈ [0, 1]d, let xu denote the vector from [0, 1]|u| containing the
components of x whose indices belong to u. By (xu, 1) we mean the vector from [0, 1]d whose jth component is xj if j ∈ u

and 1 if j 6∈ u. The ‘‘classical’’ weighted star discrepancy from [6] was defined by

D∗n,γ(Pn) := max
u⊆D

γu sup
xu∈[0,1]|u|

|discr((xu, 1), Pn)| . (4)
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