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a b s t r a c t

In this paper we consider a multi-dimensional inverse heat conduction problem with
time-dependent coefficients in a box, which is well-known to be severely ill-posed, by a
variational method. The gradient of the functional to beminimized is obtained by the aid of
an adjoint problem, and the conjugate gradientmethodwith a stopping rule is then applied
to this ill-posed optimization problem. To enhance the stability and the accuracy of the
numerical solution to the problem,we apply this scheme to the discretized inverse problem
rather than to the continuous one. The difficulties with large dimensions of discretized
problems are overcome by a splitting method which only requires the solution of easy-to-
solve one-dimensional problems. The numerical results provided by our method are very
good and the techniques seem to be very promising.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Inverse heat conduction problems (IHCPs), because of their important applications in many branches of technology,
science, etc., have been extensively studied over the last 50 years or so. Although there exists a vast literature on one-
dimensional problems, there are much fewer papers devoted to multi-dimensional cases, especially when the coefficients
of the equations describing the heat transfer processes depend on time. For recent surveys on the subject we refer to [1–3,6,
9]. The aim of this work is to suggest a fast and stable numerical method for a multi-dimensional IHCPwith time-dependent
coefficients in a parallelepiped. To our knowledge, our result is one of very few papers dealingwithmulti-dimensional IHCPs
with time-dependent coefficients.
LetΩ be the open parallelepiped (l1, L1) × (l2, L2) × · · · × (ln, Ln) with l1, l2, . . . , ln, L1, L2, . . . , Ln(n ≥ 2) being given.

Denote by ∂Ω the boundary ofΩ . For t ∈ (0, T ], set Qt := Ω × (0, t], St := ∂Ω × (0, t], S = ST . Suppose that ∂Ω is split
into three parts Γ1, Γ2 and Γ3, where Γi ∩ Γj = ∅, i, j = 1, 2, 3, i 6= j. We denote Γi × (0, T ] by Si, i = 1, 2, 3. Consider the
problem of determining ∂u/∂N|S3 and u|t=0 from the system

∂u
∂t
−

n∑
i=1

∂

∂xi

(
ai(x, t)

∂u
∂xi

)
+ a(x, t)u = f , (x, t) ∈ QT , (1.1)

u|S1 = ϕ(ξ, t), (ξ , t) ∈ S1, (1.2)

∂u
∂N
|S1∪S2 = g(ξ , t), (ξ , t) ∈ S1 ∪ S2. (1.3)
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Here, ϕ and g are given functions, ν is the outer normal to S, and

∂u
∂N
|S :=

n∑
i=1

ai(x, t)uxi cos(ν, xi)|S .

In this paper, we assume that the following conditions are satisfied

ai, a ∈ C(Q̄T ), (1.4)

ai(x, t) ≥ λ > 0, a(x, t) ≥ 0,∀(x, t) ∈ Q̄T ,∀i = 1, 2, . . . , n, (1.5)
f ∈ L2(QT ), ϕ ∈ L2(S1), g ∈ L2(S1 ∪ S2), (1.6)

The problem (1.1)–(1.3) is severely ill-posed (see, e.g. [1–3,6]). In this paper we shall use the variational method suggested
in [5] and the conjugate gradient method (CGM) to this IHCP. The idea is very simple: since the initial condition and
the Neumann condition ∂u/∂N|S3 are not known, we consider them as a control v to minimize the defect functional
J0(v) = 1/2‖u|S1 − ϕ‖

2
L2(S1)

. The gradient of the defect functional is found via the direct and adjoint problems. Since the
optimization problem is still unstable, we have to use a regularization method for it. In fact, we shall use the CGM with
a stopping rule proposed by Nemirovskii [13] which has been proved to have optimal order regularization properties. It
then comes out that for evaluating the gradient, one should first numerically solve the direct and adjoint problems and
thus obtain an approximation to the gradient. However, it should be noted that when we discretize the variational problem
we get a discretized functional, and the gradient of this new one is not the same as that obtained by the above method.
In fact, the last is only an approximation of it, and the approximation error becomes more and more significant in the
iterative procedure. Besides, since direct discretization of the direct and adjoint problems leads to extremely large systems
of algebraic equations, their numerical solutions are extremely expensive. To overcome these difficulties we suggest the
following scheme: (1) discretize the direct problem and form a corresponding discretized functional, (2) introduce the
discretized adjoint problem and (3) evaluate the gradient of the discretized functional, (4) use the CGM for the discretized
variational problem. To avoid the large dimensions of the discretized problems we use a splitting method (see, e.g. [11,
18]) for this purpose. The technique only requires solving one-dimensional problems, the numerical solution of which is
easily and directly calculated. The numerical results provided by our method are very good and the techniques seem to be
very promising. Also, we make use of the Tikhonov regularization to the problem in combination with CGM. We found that
numerical results with or without Tikhonov regularization are of the same quality. However, the algorithm converges faster
without Tikhonov regularization.
The paper is structured as follows. Section 2 summarizes the direct and inverse problems as well as the CGM. In Section 3

we formulate the discretized direct and inverse problem and calculate the gradient of the discretized objective function.
Some numerical examples are shown in Section 4 to illustrate the performance of the considered algorithm. Finally, some
conclusions are drawn in Section 5.
The results of this paper have been reported at the 6th International Conference on Inverse Problems in Engineering:

Theory and Practice, 15–19 June 2008, Dourdan (Paris), France [7].

2. Problem setting and conjugate gradient method

In this section we summarize some results on the inverse problem (1.1)–(1.3) and its related direct problem. For more
details, we refer the reader to [6].

2.1. The direct problem

This part is devoted to a non-homogeneous second boundary value problem for linear parabolic equations. This problem
is referred to as the direct one.
For the further discussions, we need the following definitions of Sobolev spaces [10]:
The space H1(Ω) consists of all elements u ∈ L2(Ω) having generalized derivatives uxi in L2(Ω). The scalar product in

H1(Ω) is defined by

(u, v)H1(Ω) =
∫
Ω

(
uv +

n∑
i=1

uxivxi

)
dx.

The space H1,0(QT ) is the set of all elements u ∈ L2(QT ) having generalized derivatives uxi in L2(QT ) with the scalar
product

(u, v)H1,0(QT ) =
∫
QT

(
uv +

n∑
i=1

uxivxi

)
dxdt.

The space H1,1(QT ) consists of all elements u ∈ L2(QT ) having generalized derivatives uxi , ut in L2(QT ). Set

V 1,0(QT ) := C([0, T ]; L2(Ω)) ∩ L2((0, T );H1(Ω)).
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