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Abstract

In this paper, a qualocation method for the one-dimensional Burgers’ equation is proposed. A semidiscrete scheme along with
optimal error estimates is discussed. Results of a numerical experiment performed support the theoretical results.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper, we consider a qualocation method for Burgers’ equation given by

ut − �uxx + uux = 0, x ∈ I = (0, 1), t ∈ (0, T ], (1.1)

with the initial and boundary conditions

u(x, 0) = u0(x), x ∈ (0, 1), (1.2)

u(0, t) = u(1, t) = 0, t > 0, (1.3)

where the positive number � = 1/Re is the coefficient of kinematic viscosity, Re denotes the Reynolds number and u0
is a given function. Burgers’ equation is a one-dimensional version of the Navier–Stokes equation. It is widely used as
a simplified model for turbulence, boundary layer behaviour, shock wave formation, convection dominated diffusion
phenomena, acoustic attenuation in fog and continuum traffic simulation.

Historically, Burgers’ equation was first introduced in [3] who gave its steady state solution. It was then discussed in
[6,7] after whom the equation was named, as a simplified model for turbulence. This equation was solved analytically
for restricted values of initial conditions independently in [14,10]. Benton and Platzman [4] surveyed the exact solution
of the one-dimensional Burgers’ equation.

For existence of a unique global solution, we refer to Smoller [22, p. 427, Theorem 21.1]. Moreover it is shown that
the solution to (1.1) tends to zero uniformly in [0, 1] as t → ∞ [22]. Higher regularity results for (1.1)–(1.3) can be
derived by modifying the analysis given in [17, pp. 123–127] and using appropriate compatibility conditions.
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Several numerical methods like finite difference methods [13], finite element methods [8], mixed finite element
technique [9], Chebyshev spectral collocation methods in [5] and collocation procedures using cubic B-splines [2] are
used to derive approximate solution to Burgers’ equations. Bressan and Quarteroni have also discussed optimal error
estimates in weighted L2-norm. In this paper, an attempt has been made to apply qualocation method to (1.1)–(1.3),
which was introduced in [20] in 1988 for boundary integral equations on smooth curves. Subsequently, Sloan et al.
[21] in 1993 extended the method to linear second order two-point boundary value problems, and derived optimal error
estimates in Wj,p, j = 0, 1, 2, 1�p�∞ norms without the quasi-uniform assumption on the finite element mesh.

A qualocation method is precisely a quadrature based modification of the collocation approximations. This method
can also be thought of as a discrete Petrov–Galerkin method using a cubic spline trial space and a piecewise linear test
space. Complete discretization is achieved by approximating the integrals by composite two-point Gauss quadrature
rule. One practical advantage of this method over the orthogonal cubic spline collocation method [18] is that for a
given partition there are only half the number of unknowns and, therefore, it reduces the size of the matrix and hence,
the computational cost. Jones and Pani [15] discussed the qualocation method for a second order semilinear two-point
boundary value problem. Subsequently, Pani [19] expanded the scope of this method by extending the analysis to
parabolic initial and boundary value problems in one space dimension. Recently, a qualocation method is also applied
to uni-dimensional single phase Stefan problem by Jones and Pani [16] and optimal error estimates are discussed.

The layout of the paper is as follows. In Section 2, the qualocation method is introduced for Burgers’equation. Optimal
error estimates for the semi-discrete scheme are derived in Section 3. Finally, in Section 4, numerical implementation
of the scheme is discussed and computational order of convergence is derived.

2. The qualocation method

For our subsequent use, we need the following definitions. Let Wm,p(I ), 1�p�∞, m ∈ N denote the standard
Sobolev spaces:

Wm,p(I ) = {� ∈ Lp(I) : Dj� ∈ Lp(I), j = 1, 2, . . . , m}
with norm

‖�‖Wm,p(I ) =
⎛
⎝ m∑

j=0

‖Dju‖p

Lp(I)

⎞
⎠

1/p

, for 1�p < ∞,

and for p = ∞
‖�‖Wm,∞(I ) = max

0� j �m
‖Dj�‖L∞(I ),

where Dj� denotes the j th derivative of � in the sense of distributions.
When p = 2, we simply denote Wm,2(I ) by Hm(I) with the norm ‖ · ‖m. Further,

H 1
0 (I ) = {� ∈ H 1(I ) : �(0) = �(1) = 0}.

When there is no chance of confusion, we may drop I from the definition of Wm,p(I ) and call it simply Wm,p. In
the sequel, we shall also use the standard spaces Lp(0, T ; X) or simply call Lp(X), where X is a Banach space
with norm ‖ · ‖X. The norm on Lp(X) is denoted by ‖�‖Lp(X) = (

∫ T

0 ‖�‖p
X)1/p, for 1�p < ∞ and for p = ∞,

‖�‖L∞(X) = ess sup0� t �T ‖�‖X.

Let v ∈ H 2(I ) ∩ H 1
0 (I ). Multiplying (1.1) by −vxx and integrating with respect to x over I, we obtain the following

formulation: Find u(t) ∈ H 1
0 (I ) ∩ H 2(I ), such that for t > 0,

− (ut , vxx) + �(uxx, vxx) = (uux, vxx) ∀v ∈ H 2(I ) ∩ H 1
0 (I ),

(u(0), v) = (u0, v) ∀v ∈ H 2(I ) ∩ H 1
0 (I ). (2.1)

Finite dimensional approximation: For N �1, let

�N = {0 = x0 < x1 < · · · < xN = 1}
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