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Abstract

A significative number of recent applications require numerical solution of large systems of Abel–Volterra integral equations.
Here we propose a parallel algorithm to numerically solve a class of these systems, designed for a distributed-memory MIMD
architecture. In order to achieve a good efficiency we employ a fully parallel and fast convergent waveform relaxation (WR) method
and evaluate the lag term by using FFT techniques. To accelerate the convergence of the WR method and to best exploit the parallel
architecture we develop special strategies. The performances of the resulting code, NSWR4, are illustrated on some examples.
© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper we illustrate a parallel algorithm for distributed-memory MIMD architectures, for the solution of a
class of systems of Volterra integral equations (VIEs) of Abel type:

y(t) = f (t) +
∫ t

0

K (t, s, y(s))

(t − s)�
ds, t ∈ [0, T ], (1.1)

where y(t), f (t), K (t, s, u) ∈ Rd , ∀t, s ∈ [0, T ] and ∀u ∈ Rd , d�1, 0�� < 1.
VIEs of Abel type model many physical and biological problems, like reaction–diffusion problems [11], the behavior

of viscoelastic materials in mechanics, superfluidity problems, the propagation of a flame, soft tissues like mitral valves
of the aorta in the human heart (for references see [9]).

At present there are a very few high level software to solve a single Abel–VIE. For example the NAG library offers
to users only one FORTRAN routine, D05BDF [16], which solves the scalar equation (1.1) in the special case

y(t) = f (t) + 1

�

∫ t

0

K (t − s)√
t − s

g(s, y(s))ds, t ∈ [0, T ], (1.2)
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where y(t), f (t), g(t, u), K (t) ∈ R, ∀t ∈ [0, T ], ∀u ∈ R. This routine implements fractional BDF methods of order
4, 5 or 6 and computes the solution y(t) on a mesh of equispaced points [13].

On the other hand, to our knowledge, we do not dispose of software tools to solve systems of VIEs of type (1.1)
when y, f, K ∈ Rd , d > 1, in spite of the number of their applications. Systems of Abel–VIEs arise from the semidis-
cretization along space of partial differential equations of fractional order, which model for example some anomalous
diffusion and subdiffusion processes [15], or arise from the semidiscretization of Volterra–Fredholm integral equations
with singular kernels, some of which occur in the modeling of the coding mechanism in the transmission of nervous
signals among neurons [10]. In these cases, in order to obtain a better approximation, the number of mesh points for
the discretization has to be large, so we come to a large system (i.e., d > > 1).

The numerical treatment of systems of VIEs, in the usual approach (see, for example [2]), requires, at each step of
the mesh introduced on [0, T ], the solution of a dense (nonlinear) system of dimension d, and the evaluation of the
numerical lag term. As a consequence, the main problem in numerically solving system (1.1) is the high computational
cost. One way to face this problem is to use parallel architectures. With this aim, during last years parallel methods for
VIEs have been proposed: some of them realize a parallelism “across the method” (see for example [8] and references
quoted in [6]), while other ones, the iterative waveform relaxation (WR) methods [1,3–5], realize a parallelism “across
the system”, so realize a massive parallelism, especially useful in solving large systems of VIEs.

On these basis, we have developed a parallel software to solve systems of Abel–VIEs of linear convolution
type:

y(t) = f (t) +
∫ t

0

K (t − s)

(t − s)�
y(s)ds, t ∈ [0, T ], (1.3)

where y(t), f (t) ∈ Rd , K (t) ∈ Rd×d , ∀t ∈ [0, T ], d > > 1, � = 1
2 .

The main features of our algorithm are:

• the use of a fully parallel and fast convergent WR method: a discrete non-stationary WR (NSWR) method of
Richardson type based on a fractional linear method of order 4 [3,4];

• the evaluation of the numerical lag term by the FFT lag-block technique [12,13] implemented in parallel.

In the following we explain the method we implemented in the code (Section 2). In Section 3 we focus our attention on
the special and significant strategieswe have developed, in order to accelerate the convergence of theNSWRRichardson
method, and in order to reduce the computational cost and the amount of data exchanges among processors. Then we
outline the special technique we used to evaluate the lag term at a reduced computational cost and show how we
organized this computation in parallel. Section 4 illustrates the organization of the code NSWR4, which implements
our algorithm. Section 5 is devoted to the illustration of some numerical examples, carried out to test the convergence
properties of the NSWR method and the degree of parallelism of our software. Section 6 contains some concluding
remarks and some ideas about the future developments of this work.

2. The discrete NSWRmethod of Richardson type based on a fractional linear method

We focus our attention on the system of Abel–VIEs (1.3). We assume the given real-valued functions f (t) and K (t)
to be at least continuous on [0, T ]. In these hypotheses Eq. (1.3) admits a unique solution y(t) continuous on [0, T ]
(for reference see [2,7,14]).

The basic idea of WR methods to solve (1.3) is to construct a sequence {yk}k∈N of solutions of integral problems
derived in a suitable way from the given system (1.3). Of course this approach, to be an attractive one, needs to realize
fast convergence of the sequence {yk}k∈N and cheap computation of any single iteration yk . Both the goals are achieved
by the NSWR methods of Richardson type: the first by choosing suitable non-stationary parameters, the second by
fully parallelism, as we soon see.

The NSWR Richardson method is generated by the splitting of the kernel K of (1.3):

K (t − s) = �k I + (K (t − s) − �k I ) (2.1)
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