

Available online at www.sciencedirect.com

JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS

Journal of Computational and Applied Mathematics 221 (2008) 367-375

www.elsevier.com/locate/cam

On the construction of local quadratic spline quasi-interpolants on bounded rectangular domains

C. Dagnino, P. Lamberti*

Department of Mathematics, University of Torino, via C.Alberto, 10 - 10123 Torino, Italy

Received 19 December 2006; received in revised form 25 May 2007

Abstract

In this paper local bivariate C^1 spline quasi-interpolants on a criss-cross triangulation of bounded rectangular domains are considered and a computational procedure for their construction is proposed. Numerical and graphical tests are provided. (© 2007 Elsevier B.V. All rights reserved.

MSC: 65D07; 65D15; 41A15

Keywords: Spline approximation; Quasi-interpolation; Criss-cross triangulation; Algorithms

1. Introduction

Let $\Omega = [a, b] \times [c, d]$ be a rectangular domain, decomposed into mn subrectangles by the two partitions

$$X_m = \{x_i, 0 \le i \le m\}, \quad Y_n = \{y_j, 0 \le j \le n\},$$

of the segments $[a, b] = [x_0, x_m]$ and $[c, d] = [y_0, y_n]$, respectively. The so called criss-cross triangulation \mathcal{T}_{mn} of Ω is defined by drawing the two diagonals in each subrectangle. We define $S_2^1(\mathcal{T}_{mn}) = \{s \in C^1(\Omega):$ the restriction of *s* to each triangle is an element of $\mathbb{P}_2\}$, where \mathbb{P}_ℓ is the space of polynomials in two variables of total degree less than or equal to ℓ .

Let also $\{B_{ij}, (i, j) \in K_{mn}\}$, with $K_{mn} = \{(i, j) : 0 \le i \le m + 1, 0 \le j \le n + 1\}$, be the collection of (m+2)(n+2)B-splines [1,4,17], with knots:

$$\begin{aligned} x_{-2} &\leq x_{-1} \leq a = x_0 < x_1 < \dots < x_m = b \leq x_{m+1} \leq x_{m+2}, \\ y_{-2} &\leq y_{-1} \leq c = y_0 < y_1 < \dots < y_n = d \leq y_{n+1} \leq y_{n+2}, \end{aligned}$$
(1)

that generate the space $S_2^1(\mathcal{T}_{mn})$. They can be computed both in piecewise polynomial (pp) form, by using the conformality condition method [3], and in Bernstein–Bézier (B–B) form [12].

* Corresponding author.

0377-0427/\$ - see front matter © 2007 Elsevier B.V. All rights reserved.

doi:10.1016/j.cam.2007.10.025

E-mail addresses: catterina.dagnino@unito.it (C. Dagnino), paola.lamberti@unito.it (P. Lamberti).

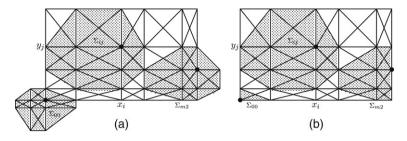


Fig. 1. Some supports of *B*-splines with (a) simple knots and (b) multiple knots on $\partial \Omega$.

Since dim $S_2^1(\mathcal{T}_{mn}) = (m+2)(n+2) - 1$ and there is only one linear dependency among the B_{ij} 's, then a basis for $S_2^1(\mathcal{T}_{mn})$ is obtained by deleting any one of them [3].

If in (1) we assume

$$\begin{aligned} x_{-2} < x_{-1} < a, & b < x_{m+1} < x_{m+2}, \\ y_{-2} < y_{-1} < c, & d < y_{n+1} < y_{n+2}, \end{aligned}$$

$$(2)$$

then we obtain the so called "classical" *B*-splines with octagonal support Σ_{ij} , simple knots and C^1 smoothness everywhere [3]. We remark that some of their supports are not completely included in Ω , as shown in Fig. 1(a).

If, in (1), we assume

$$\begin{aligned} x_{-2} &\equiv x_{-1} \equiv a, \quad b \equiv x_{m+1} \equiv x_{m+2}, \\ y_{-2} &\equiv y_{-1} \equiv c, \quad d \equiv y_{n+1} \equiv y_{n+2}, \end{aligned}$$
(3)

then we have a new set of *B*-splines B_{ij} [13,15] with multiple knots on the boundary $\partial \Omega$ of Ω and all supports Σ_{ij} included in Ω (Fig. 1(b)). We denote it by \mathcal{B}_{mn} . Like the "classical" *B*-splines, the new ones also satisfy the partition of unity property.

We can distinguish three kinds of "modified" B_{ij} 's belonging to \mathcal{B}_{mn} . There are:

(i) a first-boundary-layer of 2m + 2n + 4 B-splines, with triple knots on $\partial \Omega$, i.e.: B_{i0} , $B_{i,n+1}$, $0 \le i \le m + 1$, B_{0j} , $B_{m+1,j}$, $1 \le j \le n$;

(ii) a second-boundary-layer of 2m + 2n - 4 B-splines, with double knots on $\partial \Omega$, i.e.: B_{i1} , B_{in} , $1 \le i \le m$, B_{1j} , B_{mj} , $2 \le j \le n - 1$;

(iii) (m-2)(n-2) inner *B*-splines, with simple knots, i.e.: B_{ij} , $2 \le i \le m-1$, $2 \le j \le n-1$, coinciding with the corresponding "classical" ones.

The knot multiplicity affects the *B*-spline smoothness, i.e. B_{ij} is 2 - r differentiable, if *r* is the knot multiplicity. Therefore the first-boundary-layer *B*-splines have a jump on $\partial \Omega$, the second-boundary-layer ones are C^0 on $\partial \Omega$ and the inner ones are C^1 everywhere. Moreover they can be expressed in terms of "classical" *B*-splines [8].

We recall [6] that the second-boundary-layer *B*-splines and the inner ones coincide with the so called "interior", "side" and "corner" *B*-splines, spanning the space of C^1 quadratic piecewise polynomials with boundary conditions [2].

Figs. 2–5 show some *B*-splines with (a) simple knots and (b) multiple knots on $\partial \Omega$.

This paper deals with discrete local quadratic spline quasi-interpolants (q-i's), defined on a criss-cross triangulation T_{mn} of Ω and generated by the *B*-splines belonging to \mathcal{B}_{mn} .

In Section 2 we introduce the spline q-i's and we recall some of their properties. In Section 3 we propose a procedure, developed in Matlab, for their generation and we give numerical and graphical test results.

2. Local quadratic C^1 spline quasi-interpolants

We consider linear operators

 $Q: C(\Omega) \to S_2^1(\mathcal{T}_{mn}),$

Download English Version:

https://daneshyari.com/en/article/4642029

Download Persian Version:

https://daneshyari.com/article/4642029

Daneshyari.com