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Abstract

In this work, we consider a statistically based multiwavelet thresholding method which acts on the empirical wavelet coefficients
in groups, rather than individually, in order to obtain an edge-preserving image denoising technique. Our strategy allows us to exploit
the dependencies between neighboring coefficients to make a simultaneous thresholding decision, so that estimation accuracy is
increased.

By interpreting the multiwavelet analysis in a statistical context, we propose a new weighted multiwavelet matrix thresholding
rule, based on the statistical modeling of empirical coefficients. This allows the thresholding decision to be adapted to the local
structure of the underlying image, hence producing edge-preserving denoising. Extensive numerical results are presented showing
the performance of our denoising procedure.
© 2006 Published by Elsevier B.V.
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1. Introduction

In this work, we address the classical problem of removing additive Gaussian noise from a corrupted image, namely,
the denoising problem. The goal of any denoising method is to eliminate the noise parts while retaining as much as
possible of the important signal characteristics, such as, for example, the edges and sharp features. More precisely,
given a noisy image represented by a function f̄ (x, y), defined on a square domain I, it can be interpreted as the
following sum:

f̄ (x, y) = f (x, y) + �(x, y),

where f (x, y) is the original image, and �(x, y) is a Gaussian noise component. Our goal is to find an approximation
of f̄ which is as close as possible to the function f, corresponding to the original non-perturbed image. This can be
reformulated as the following variational problem. Let � be a positive parameter; we wish to find a function g∗

� that
minimizes, over all possible functions g in a smoothness space Y, the functional

‖f̄ − g‖2
L2(I ) + 2�‖g‖Y , (1)
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where the L2-norm ‖f̄ − g‖L2(I ) measures the difference between f̄ and g, and ‖g‖Y is the norm in the space Y. The
positive parameter � balances the smoothness of g with the goodness of the fit, determining the amount of noise that
must be removed to obtain a good approximation. In [4], it has been shown that, if Y is the Besov space Y =B1

1 (L1(I )),
when the wavelet expansion of f̄ and g are considered, the exact minimizer of (1) is obtained by means of the
so-called soft thresholding rule, which was previously introduced by Donoho and Johnstone in [7]. This procedure
estimates wavelet coefficients term by term, on the basis of their individual magnitudes. Other coefficients have no
influence on the treatment of any singular coefficient. On the other hand, in [1–3,10,11,13,5,9], soft thresholding is
performed by considering empirical wavelet coefficients in groups, rather than individually. Since the proper setting
for working with blocks of wavelet coefficients is the multiwavelet framework, the main idea of this paper is to
consider a multiwavelet decomposition of the original noisy image, in order to naturally take into account the local
dependencies of neighboring coefficients. In this context, we propose a weighted matrix shrinkage rule which yields
the exact minimizer of a new functional involving a roughness penalty term. This consists in a sum of a weighted
penalty for each multiwavelet coefficient. The crucial point of our approach is to find suitable weights, depending
only on the starting data, that allow us to eliminate the noise, while retaining the important signal features. Since
it is well known that the multiwavelet transform coefficients can be modeled, within each subband, as independent
identically distributed (i.i.d.) random variables with Generalized Gaussian distribution [13], we use the entries of each
block multiwavelet coefficient to statistically estimate the standard deviation of the original non-corrupted image. This
allows us to choose, for the entries of each block, weights that are inversely proportional to the ratio between the energy
of the original signal and the energy of the noise, and to the magnitude of the entries themselves. In addition, we perform
a data-driven selection of the parameter �, by suitably adapting the sure estimation procedure proposed by Donoho and
Johnstone [8].

Our paper is organized as follows. In Section 2, some basics on multiwavelets are given. Section 3 is devoted to our
proposed weighted matrix shrinkage. The choice of the weight matrices is considered in Section 4, while the choice of
the thresholding parameter and our encouraging numerical results are discussed in Section 5.

2. Basics on multiwavelets

Given a function f ∈ L2(R), and an orthogonal multiwavelet basis {�j,k}j,k∈Z of L2(R)r , obtained by dilating and
translating a vector-valued “mother wavelet” �(·) = [�1(·), �2(·), . . . , �r (·)]T, i.e., �j,k(·) : =2j/2�(2j · −k), the
multiwavelet expansion of f is given by

f =
∑

j,k∈Z

dT
j,k�j,k =

∑
j,k∈Z

〈f, �j,k〉T�j,k , (2)

where dj,k = 〈f, �j,k〉 = ∫
R f (x)�j,k(x) dx are r-vectors. A simple construction of the mother multiwavelet � can be

realized by introducing the concept of multiresolution analysis (MRA) of multiplicity r, namely, a nested sequence of
subspaces of L2(R)r , {Vj }j∈Z, satisfying . . . Vj−1 ⊂ Vj ⊂ Vj+1, . . . , and a vector-valued scaling function �, such
that, for each j ∈ Z, the integer translates of the jth diadic dilates of �, {�j,k(x) : =2j/2�(2j x − k), k ∈ Z} form an
orthonormal basis for Vj (see [6] for details). More precisely, the space Vj is defined as

Vj := span{2j/2�i (2j − k), 1� i�r, k ∈ Z}.

For an assigned MRA of multiplicity r {Vj }j∈Z we can define the complementary space Wj of Vj , for every j ∈ Z,
such that Vj+1 = Vj ⊕ Wj . In this context, for each j ∈ Z, the integer translates of the j th diadic dilates of the mother
multiwavelet �, {�j,k(x) : =2j/2�(2j x − k), k ∈ Z} form an orthonormal basis for Wj . More precisely, the space Wj

is defined as

Wj := span{2j/2�i (2j − k), 1� i�r, k ∈ Z}.



Download	English	Version:

https://daneshyari.com/en/article/4642125

Download	Persian	Version:

https://daneshyari.com/article/4642125

Daneshyari.com

https://daneshyari.com/en/article/4642125
https://daneshyari.com/article/4642125
https://daneshyari.com/

