ELSEVIER

Contents lists available at SciVerse ScienceDirect

Applied Catalysis B: Environmental

journal homepage: www.elsevier.com/locate/apcatb

A parametric study of the UV-A photocatalytic oxidation of H₂S over TiO₂

Angela Alonso-Tellez^a, Didier Robert^{a,b}, Nicolas Keller^a, Valérie Keller^{a,*}

^a Laboratoire des Matériaux, Surfaces et Procédés pour la Catalyse (LMSPC), CNRS, University of Strasbourg, 25 rue Becquerel 67087, Strasbourg, France ^b Saint-Avold Antenna, LMSPC, CNRS, University of Metz and University of Strasbourg, rue Victor Demange, 57500 Saint-Avold, France

ARTICLE INFO

Article history: Received 25 August 2011 Received in revised form 4 December 2011 Accepted 9 December 2011 Available online 17 December 2011

Keywords: TiO2 Hydrogen sulfide Photocatalysis Sulfates Parametric study Regeneration XPS surface analysis Reaction mechanisms

ABSTRACT

A parametric study of the UV-A H_2S photocatalytic oxidation over TiO₂ P25 has investigated the influence of the TiO₂ coating surface density, the total flow rate, the relative humidity, the temperature and the irradiance as main reaction parameters on the H_2S conversion, the SO₂ selectivity (targeted as low as possible), the duration without any SO₂ release, and thus on the gas phase sulfur removal efficiency. The deepest non-illuminated internal TiO₂ layers – even not photocatalytically active – could play a role in adsorbing SO₂ and delaying its release into the gas phase, for explaining the behavior of high surface density TiO₂ coatings. The Ti⁴⁺ surface sites have been proposed to act as active sites for the H₂S photocatalytic oxidation, and general reaction pathways leading to the formation of SO₂ in the gas phase and to surface sulfates have been hypothesized, involving photogenerated holes, sulfhydryl radicals or hydroxyl radicals. The role of active sulfate radicals has been put forward for explaining the behavior turn with time on stream on sulfate-deactivated TiO₂, from a progressive deactivation into a complete H₂S conversion to SO₂. Finally, effective regeneration treatment with recovering of the initial activity could be performed by weakly basic washing.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Hydrogen sulfide (H_2S) is a malodorous, toxic and corrosive compound, with a 0.0004 ppm low odor threshold and a characteristic rotten-egg smell [1,2], emitted from wastewater treatment or released as by-product of processes like petroleum refining, pulp and paper manufacturing, Treating H_2S -containing air is important for environmental reasons (acid rain precursor contributing to global warming) and maintenance problematic (corrosive attack on process equipment), as well as for public concern over human health and comfort (noxious and nasty odor) in the frame of the indoor air quality control.

Therefore, removing H_2S from air remains a relevant issue, the main actual processes being biofiltration, thermal incineration combined with catalytic processes and wet scrubbing. The works devoted to the photocatalysis degradation of H_2S remained scarce by contrast to those on the mineralization of hazardous organic molecules. However, photocatalysis was reported to be efficient for removing H_2S from air, with the formation of sulfates as ultimate reaction products accumulating at the catalyst surface. This causes an inherent primary problem and leads to *on-flow* deactivation [3–12]. The mechanism of the H_2S photocatalytic oxidation remains not fully understood. Reaction pathways involving SO_2 as oxidation intermediate [9-11] and/or the direct formation of sulfates from H₂S through an eight-electron transfer process [5] have been proposed. Mechanisms involving HS[•] sulfhydryl radicals formed by the direct attack of H₂S by holes or by reaction with OH• radicals, molecular oxygen or directly the OH• radicals have been proposed to take part in the H₂S oxidation into sulfates [4-6,9-11,13]. Based on IR spectroscopy investigation, Kataoka et al. proposed that adsorbed SO_2^- may be a possible reaction intermediate and could provide a clue as to the reaction pathway, which might help to unravel the entire eight-electron transfer process [5]. Strategies have been recently elaborated for developing low SO₂ selectivity photocatalytic material, *i.e.* for minimizing the release of the hazardous SO₂ pollutant to the gas phase and for delaying its formation in comparison to the sulfate production. It included the design of sol-gel TiO_2 , $TiO_2/M-MCM-41$ (M = Cr, Ce) mesoporous systems or hybrid TiO_2 -SiM_gO_x composites for combined chemisorption and photocatalytic removal [12]. Cheap, lightweight and easily shaped UV-transparent polymeric supports for TiO₂ nanoparticle thin films were also studied as alternative to borosilicate glass or opaque monoliths [9].

The aim of this paper is to report on a parametric study of the H_2S photocatalytic oxidation under UV-A illumination over the TiO_2 P25 reference, not available up to now, in terms of influence of the photocatalyst weight, the total flow rate, the relative humidity, the temperature and the UV-A irradiance. Whereas such a parametric study was already available for the photocatalytic degradation of many liquid phase pollutants such as dyes or pesticides, or of

^{*} Corresponding author. Tel.: +33 36885 2736; fax: +33 36885 2761. *E-mail address:* vkeller@chimie.u-strasbg.fr (V. Keller).

^{0926-3373/\$ -} see front matter © 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.apcatb.2011.12.014

many gas phase hydrocarboned VOCs, no systematic results were established up to now for the H_2S photocatalytic oxidation, except scarce works of Portela et al. [9,13]. Surface characterization and regeneration treatments were also investigated.

2. Experimental

2.1. Characterization techniques

Thermal gravimetry analysis (TGA) was performed using a TGA 5000 thermo-analyzer. Each sample was placed in a platinum crucible and heated from room temperature to 900 °C with a heating rate of 20 °C/min, using a 20/80 vol.%/vol.% O₂/N₂ mixture at a flow rate of 35 mL/min.

X-ray photoelectron spectroscopy (XPS) surface characterization was performed on a ThermoVG Scientific apparatus equipped with a Al K_{α} (1486.6 eV) source (pass energy of 20 eV). All the spectra were decomposed assuming several contributions, each of them having a Doniach–Sunjic shape [14] and a Shirley background subtraction [15]. The sulfur-to-titanium (S/Ti) surface atomic ratios have been calculated using the sensitivity factors, as determined by Scofield [16]. The subtraction of the energy shift due to electrostatic charging was determined using the contamination carbon C 1s band at 284.6 eV as reference.

Infrared Fourier transform spectroscopy (IRTF) was carried out with a Nicolet analyzer working in the transmittance mode using a 90 wt.% anhydrous KBr pellet.

The light transmission through the photocatalytic coating was directly measured on the TiO₂-coated photoreactor, by comparing incident and transmitted light irradiance through the coating inside the reactor, using a wideband RPS900-W rapid portable spectroradiometer (International Light Technology).

2.2. Experimental device and procedure

The photocatalytic reaction was carried out in a 270 mm length single pass annular Pyrex reactor made of two coaxial tubes (*i.d.* 28 mm and *e.d.* 30 mm), between which the reactant mixture was passing through. Details concerning both reactor and device can be found elsewhere [17]. 10–800 mg of photocatalytic material, corresponding to a surface density of 0.04–3.37 mg/cm², was evenly coated on the internal side of the 30 mm diameter external tube by evaporating a catalyst-containing aqueous suspension to dryness. The catalyst coated reactor was finally dried at 110 °C for 1 h in air.

Except for tuning the H₂S and the water vapor concentrations, the composition of the reactant feed was H₂S (15 ppm, corresponding to 0.023 mg of H₂S per m³), air (92 vol.%), and balanced He, fed through mass-flow controllers with a total flow ranging from 100 to 980 mL/min, corresponding to total flow rates and residence times within the 0.7-6.86 cm/s and 38-3.9 s ranges, respectively. For tuning the water vapor content, the relative humidity was defined by considering 100% of relative humidity as the saturated vapor pressure of water at 25 °C and pressure of 1 atm, corresponding to about 24 Torr. A cylindrical furnace or a water-cooling system surrounding the photoreactor was used for tuning the temperature of the tests in the 22-160 °C range. The tests were mainly conducted at 500 mL/min total flow rate, with a 3.5 cm/s flow rate and a 7.6 s residence time, in dried conditions. Before the photocatalytic reaction, the catalyst was first exposed to the polluted air stream with no illumination until dark-adsorption equilibrium was reached. Afterwards the UV illumination was switched on. Illumination was provided by commercially available 8 W and 15 W blacklight tubes (Philips TL8W/08 BLB F8T5 and Sylvania T5/BL350), with a spectral peak centered around 380 nm, located inside the inner tube of the reactor. H₂S and SO₂ were analyzed on-line every 3 min by a pulsed flame photometric detector (PFPD) coupled to a CP-Sil 5 CB column on a gas chromatograph (Varian 3800).

The efficiency of the depollution process was expressed in terms of H_2S conversion, of SO_2 selectivity – that is expected as low as possible since SO_2 remained a hazardous and unwanted gaseous by-product – and of sulfur removal in the gas phase, according to Eqs. (1)–(3). Depending on the test conditions, the duration at total sulfur removal could be also reported.

$$C_{\rm H_2S}(\%) = \frac{[\rm H_2S]_{in} - [\rm H_2S]_{out}}{[\rm H_2S]_{in}} \times 100 \tag{1}$$

$$S_{SO_2}(\%) = \frac{[SO_2]_{out}}{[H_2S]_{in} - [H_2S]_{out}} \times 100$$
(2)

Sulfur removal (%) =
$$\left(1 - \frac{[H_2S]_{out} + [SO_2]_{out}}{[H_2S]_{in}}\right) \times 100$$
 (3)

Regeneration of the photocatalysts was performed *ex situ* by washing the used photocatalysts under mechanical stirring in an aqueous or a 0.01 M NaOH solution (20 mL) at $25 \,^{\circ}\text{C}$ or $50 \,^{\circ}\text{C}$ for 5 h. After water washing, the samples were filtered and dried at $110 \,^{\circ}\text{C}$ overnight, before being coated again inside the reactor or characterized.

3. Results and discussion

3.1. Influence of TiO₂ surface density

Fig. 1A-C shows the on-stream evolution of H₂S conversion and SO₂ selectivity obtained on TiO₂ P25 as a function of the surface density, as well as the performances obtained after 5.5 h under stream. The influence of the surface density on both durations with no H₂S release and no SO₂ release – this latter corresponding thus to the duration at total sulfur removal - is summarized in Fig. 2. The general behavior of the photocatalyst was characterized by an onstream deactivation, with a quicker and more pronounced decrease in the H₂S conversion for low TiO₂ surface densities. Increasing the surface density led to maintain a complete H₂S conversion for longer durations before deactivation occurred with time on stream, and to delay the appearance of SO₂ in the outlet flow. The SO₂ selectivity seems to stabilize at a higher value with increasing density, however, at the highest surface densities tested, due to the delay in SO₂ appearance, the SO₂ selectivity was still increasing after 5.5 h of time on stream. Thus, with 15 ppm of H₂S inlet concentration, both H₂S conversion and SO₂ selectivity increased with increasing the TiO₂ surface density. For densities higher than 0.44 mg/cm², the H₂S conversion reached 100% and the SO₂ selectivity was strongly decreased. One should note that the non steady-state of both SO₂ selectivity and sulfur removal after 5.5 h of time on stream at the two highest TiO₂ surface densities, might be the reason of the observed behavior for high TiO₂ surface densities.

Thus, to confirm the influence of the surface density parameter, the reaction conditions have been tightened, with an increased inlet H₂S concentration of 100 ppm and a total flow of 1 L/min (Fig. 3). This led to determine the optimal TiO₂ P25 surface density for the degradation of H_2S at 2.53 mg/cm² (*i.e.* 600 mg of TiO₂), with the linear increase in H₂S conversion with increasing the surface density, before asymptotically stabilizing at 80%. This behavior as a function of the photocatalyst mass was in agreement with that usually reported for the photocatalytic oxidation of VOCs, with a first linear increase in the activity with the surface density, due to the increase in the amount of TiO₂: this corresponds to the case for which all the particles are totally illuminated [18]. For higher catalyst amounts, a screening effect of excess particles occurs, which masks part of the photosensitive semiconductor surface, due to the limited penetration thickness of UV-A light (Fig. 4). Also, with increasing the photocatalytic coating thickness, limitation of the reactant Download English Version:

https://daneshyari.com/en/article/46422

Download Persian Version:

https://daneshyari.com/article/46422

Daneshyari.com