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a b s t r a c t

We study nonlinear finite element discretizations for the density gradient equation in
the quantum drift diffusion model. In particular, we give a finite element description
of the so-called nonlinear scheme introduced by Ancona. We prove the existence of
discrete solutions and provide a consistency and convergence analysis, which yields the
optimal order of convergence for both discretizations. The performance of both schemes is
compared numerically, in particular, with respect to the influence of approximate vacuum
boundary conditions.
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1. Introduction

During the last decade, quantum corrections of the well-known drift diffusion (DD) model for semiconductor devices [16–
18] gained considerable attention in the mathematics and engineering community [20,9,29]. Most common is the so-called
quantum drift diffusion (QDD) model proposed in [5,8,3], which is also known as the density gradient (DG) model. It proved
its reliability especially in the simulation of MOSFET devices [29,10,9,7,6] and is also well understood from the mathematical
point of view [28,1,22,19,14,15,20]. This great success is also underlined by its inclusion in commercial software packages,
e.g. by Silvaco or Lucent. Hence, the QDD model is a good candidate to be the successor of the classical DD model, since it
adds quantum effects to the DD model in a general, compact and computationally efficient manner [9,29].

The scaled unipolar, stationary QDD model on the bounded domain Ω = (0, 1) reads [20]

−ε2 ∂xx
√
n

√
n
+ log(n)+ V = F, (1.1a)

∂x(n∂xF) = 0, (1.1b)

−λ2∂xxV = n− Cdop (1.1c)

for the electron density n, the quantum quasi-Fermi potential F and the electrostatic potential V . The parameter ε is the
scaled Planck constant, λ is the scaled Debye length and the function Cdop represents the concentration of fixed background
ions. The system (1.1a)–(1.1c) is subject to Dirichlet boundary conditions modeling the Ohmic contacts of the device

n = nD, V = VD := Veq + Vext F = FD := Feq + Vext on ∂Ω, (1.1d)
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where nD, Veq and Feq are the equilibrium values of the charge concentrations, the potential and the quasi-Fermi level,
respectively, and Vext is the external applied voltage. Note that the scaled constants are in general quite small, i.e. ε2,λ2

=

O(10−2...−4), such that boundary or internal layers might occur [3].
Several discretization schemes have been proposed for the solution of the coupled, nonlinear partial differential equations

(1.1). These can be classified into linear and nonlinear schemes, depending on the respective discretization of (1.1a).
Following the discussion in [4], linear discretization schemes use linear ansatz functions for the electron density n (or
for s =

√
n), while nonlinear schemes use nonlinear ansatz functions, e.g., exponentials. A typical linear scheme is the

linear conservative scheme based on finite differences presented in [4]. However, due to the quantum effects that occur
inside the device, the density might change by several orders of magnitude. Thus, such schemes require very fine grids in
order to obtain reliable results, which implies a significant computational cost. To cope with such difficulties, nonlinear
schemes have to be used, like the finite difference nonlinear scheme [4], which has proved its efficiency in solving coarse
grid device examples involving quantum effects. An alternative numerical treatment of (1.1a) is proposed in [12]. Here,
with the aim of fulfilling a maximum principle, first a suitable linearization is performed using a damped Newton method
and then piecewise linear finite elements are employed to discretize the linearized problem. Another line of research is
presented in [21,23], where the existence of a discrete solution for the coupled problem, as well as error bounds and uniform
convergence for a Scharfetter–Gummel type discretization are investigated [13,25].

Although, the finite difference nonlinear scheme has been applied with success [4,9], no numerical analysis is so far
available. In this paper, we embed this question into the context of finite element discretizations and study their respective
consistency and convergence. Choosing appropriate quadrature rules we recover Ancona’s nonlinear scheme [4]. In [27] the
effect of approximate vacuum boundary conditions is studied and an improved scheme is suggested. Here, we present a
different approach based on finite elements, which is also not affected by the boundary condition and yields even simpler
discrete nonlinear systems.

This paper is organized as follows. In Section 2, we present the two different discretization schemes for the DG Eq.
(1.1a). The existence of discrete solutions, as well as consistency and convergence results for the discretization schemes are
discussed in Section 3. Finally, numerical tests for a metal insulator semiconductor (MIS) diode, underlining the theoretical
results, are presented in Section 4. Concluding remarks are given in Section 5.

2. The finite element approach

In this section we introduce an exponential variable transform for the density, which has already proved very helpful in
the analysis of the transient problem [14,15]. The construction of the nonlinear difference scheme in [4] relies on the same
idea and is motivated by replacing the ‘fast’ density variable n with the ‘slow’ one u = log(n). In the following we write the
transformed DG equation in weak form and perform the finite element discretization.

We consider here only the boundary value problem for the DG equation

−ε2 ∂xx
√
n

√
n
+ log(n)+ V = 0, (2.1a)

n(0) = α n(1) = β. (2.1b)

on the bounded domain Ω = (0, 1) and for a given potential V ∈ H1(Ω). Further, we assume α,β > 0.
After multiplication by

√
n and using an exponential transformation n = e2u, in order to resolve better the large variations

of the carrier density in the vicinity of inversion layers [3], we obtain the transformed problem in terms of the new unknown
u

−ε2∂xxeu
+ eu(2u+ V) = 0, (2.2a)

u(0) =
1
2

log(α) u(1) =
1
2

log(β). (2.2b)

The weak formulation now reads: Find u ∈ uD + H1
0(Ω) such that

ε2
∫
Ω

eu∂xu∂xφdx+
∫
Ω

(2u+ V)euφdx = 0 for all φ ∈ H1
0(Ω), (2.3)

where uD is an H1(Ω)-extension of the boundary data.
Concerning the existence and uniqueness of solutions to the DG equation, different results are available in the

literature [20], which depend on the specific formulation of the problem. In terms of the logarithmic variable u, we have
the following.

Proposition 2.1. Let V ∈ H1(Ω) and choose constants V , V ∈ R such that

V ≤ V(x) ≤ V for all x ∈ Ω .



Download English Version:

https://daneshyari.com/en/article/4642233

Download Persian Version:

https://daneshyari.com/article/4642233

Daneshyari.com

https://daneshyari.com/en/article/4642233
https://daneshyari.com/article/4642233
https://daneshyari.com

