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ARTICLE INFO ABSTRACT
Artile—’ history: Polynomial solutions to the generalized Lamé equation, the Stieltjes polynomials, and the
Received 22 June 2007 associated Van Vleck polynomials, have been studied extensively in the case of real number

Received in revised form 11 February 2008 parameters. In the complex case, relatively little is known. Numerical investigations of

the location of the zeros of the Stieltjes and Van Vleck polynomials in special cases reveal
intriguing patterns in the complex case, suggestive of a deeper structure. In this article we
report on these investigations, with the main result being a proof of a theorem confirming
that the zeros of the Van Vleck polynomials lie on special line segments in the case of the
complex generalized Lamé equation having three free parameters. Furthermore, as a result
of this proposition, we are able to obtain in this case a strengthening of a classical result of
Heine on the number of possible Van Vleck polynomials associated with a given Stieltjes

polynomial.
© 2008 Elsevier B.V. All rights reserved.
1. Introduction
Letay, ..., o, be distinct complex numbers, and let p1, ..., p, be positive numbers. The generalized Lamé equation is the
second-order ODE given by
n n
[[e—a¢"@ +2) p[[z—a)¢' @) = V)p(@). (1)
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According to aresultin [10], there exist at most D polynomials V of degree n— 2 for which (1) has a polynomial solution
¢ of degree k. These polynomial solutions are often called Stieltjes or Heine-Stieltjes polynomials, and the corresponding
polynomials V are known as Van Vleck polynomials.

On the basis of Stieltjes’ work, the zeros of the Stieltjes polynomials can be nicely interpreted in terms of the equilibrium
positions of an electrostatic system with logarithmic potential [8,18,7,4]. Consider the field generated by n charges p1, ..., on
fixed at the positions a4, ..., «, in C, and k positive unit charges allowed to move freely in C, where the charges repel each
other according to the law of logarithmic potential. This means that the charges are not point charges, but are distributed
along infinite straight wires perpendicular to the plane C. Then the electrostatic potential of the system is given by

n k
W(zi,...,z) = —log LHH |zi — oj|” 1_[ |z — z,»|:| . (2)
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The equilibrium positions then consist of the points (z1, ..., z;) € C* for which VW(zy, ..., z) = 0. By computing explicitly
VW(z, ..., z) = 0 using the expression (2) for W, we deduce that the equilibrium positions satisfy Niven’s equation [19]:
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For an equilibrium position of k charges, (z1, . . ., z), we may construct the polynomial

k
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Recalling a basic fact about polynomials,
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it follows that the polynomials (4) solve the Eq. (1) and are therefore Stieltjes polynomials. In particular, this leads to a
one-to-one correspondence between the set of Stieltjes polynomials and the set of equilibrium positions of the electrostatic
system described above [8].

To interpret the Van Vleck zeros, notice that if ¢(z) is a Stieltjes polynomial, and v is a zero of the corresponding Van
Vleck polynomial, then
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Thus, either v = o; and ¢/ (v) = 0, or ¢'(v) # 0 and
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where 7}, ..., z,_, are the zeros of ¢'(z). We see that if we fix charges 2p1,...,2p, at a1, ..., o, and unit charges at

7y, ...z,_4, then the Van Vleck zeros represent equilibria of a unit charge allowed to move freely in C. (See [13, cf. Theorem
3.1] for this interpretation of solutions to the above equation.)

In addition to the description of the electrostatic system with logarithmic potential, the Lamé equation (1) arises in other
contexts, for example the quantum asymmetric top [ 1] and the Gaudin spin chains [9], as well as the classical case considered
by Lamé in the 1830’s of solutions to the Laplace equation on an ellipsoid [19, Chapter XXIII].

For aq, ..., a, real, Stieltjes [17] showed that the locations of the zeros of the Stieltjes polynomials are completely
characterized by their distribution in the subintervals (o1, ®3), .. ., (@,_1, ). Similar results for the zeros of the Van Vleck
polynomials were also obtained in [16]. Obviously, no such result holds when the «;’s are complex numbers, and as one
can expect, the situation is more complicated than in the real case. The first result in the complex case was obtained
in [15]; he showed that the zeros of any Stieltjes polynomial lie inside the convex hull of the set {«q, ..., ,}. Following
a similar argument, Marden [12] extended Polya’s result to also include the zeros of Van Vleck polynomials. More recently,
a refinement of these results for special configurations of the «;’s has also been obtained by Zaheer and Alam [20,21].

In this paper, we are interested in the location of the zeros of the Van Vleck polynomials in the case where the
charges p; are located on the vertices «; of cyclic polygons in the complex plane, where numerical investigations reveal
substantial patterns formed by the zeros. In Section 2, we establish some rigorous results on the zero loci of the Van Vleck
polynomials when the «; form the vertices of any equilateral triangle, namely, that the zeros lie on particular portions of
the angle bisectors. In Section 3, we discuss non-equilateral triangles, higher order polygons, and the technical difficulties
in generalizing the proof of our theorem. In particular, we present some numerical results supporting the conjecture that
although there are patterns that the zeros adhere to, the result obtained in Section 2 is unique to case of the equilateral
triangle. The final section contains some concluding remarks and conjectures.

2. The equilateral case

Most studies of the generalized Lamé equation (1) consider the case when the charges p; are all positive. We will consider
in this section, though, charges that can take on all real values. In the subsection that follows we will focus on positive
charges, for which our main result applies. As a simple corollary we derive a remarkable result regarding the case when
the fixed charges are zero, namely that the free charges are still distributed in the convex hull of the “zero charges”. In the
succeeding subsection we consider negative fixed charges.

2.1. Nonnegative charges p; > 0

Specify a charge strength p > 0 and 2 locations «1, o in the complex plane, and place two charges at these locations. Up
to reflection across the line passing through o1 and o, a location «3 for a third charge is determined so that the charges lie
at the vertices of an equilateral triangle. Consider further the line segments, henceforth called the bisectrices, connecting the
vertices to the triangle incenter. Since the Lamé equation is invariant under complex affine transformations, we can assume
without loss of generality that the ;s are the third roots of unity, i.e.

a1 = e 5l forj=0,1,2.
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