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a b s t r a c t

The behaviour of electromagnetic resonances in cavities is modelled by a Maxwell
eigenvalue problem (EVP). In the present work, we rewrite the corresponding variational
problem, as it arises with a view to the application of a finite element method, in a mixed
formulation. For the modelling of realistic problems the integrals occurring in this mixed
formulation often cannot be evaluated exactly. We take into account the error arising
from numerical quadrature and show convergence to the approximations using exact
integration. Finally, some numerical results are presented.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

In designing e.g. semiconducting lasers, lossy waveguides and particle accelerators, one encounters electromagnetic
resonances in cavities. These resonances are described using the Maxwell equations. In order to reduce development time
and costs, a realistic modelling is indispensable.

We will assume the occurring electrical and magnetic fields to be time-harmonic, i.e. the observable fields have the form
R(Eeiωt), resp. R(Heiωt), where E, resp. H, is a complex unknown vector field depending on the space coordinates and ω is
the corresponding unknown frequency. Under those assumptions we are led to the following Maxwell EVP:

Problem 1. Find eigentriples (ω,E,H) ∈ R× L2(Ω)× L2(Ω) such that

∇ × E = −iωµH (1a)
∇ · (µH) = 0 (1b)
∇ × H = iωεE (1c)
∇ · (εE) = 0 (1d)

along with the BCs on Γτ ⊂ Γ

E× n = 0 (1e)
(µH) · n = 0 (1f)

and the BCs on Γν ⊂ Γ

H× n = 0 (1g)
(εE) · n = 0. (1h)
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Here, the material parameters ε and µ (dielectricity, resp. magnetic permeability) are bounded, coercive and piecewise
Lipschitz continuous tensor fields. The theoretical framework of the paper allows for bounded Lipschitz domains Ω ⊂ R3,
but since we will later on use exact triangulations of Ω , for simplicity, we restrict ourselves in reality to polyhedric domains.

It is known, see e.g. [10], that the modelling of electromagnetic resonances is delicate. The early attempts to calculate
FEM approximations soon faced the occurrence of non-physical, so-called spurious, eigenmodes. Later research (see [9] and
the references therein) demonstrated that the origin of those spurious modes is situated in the infinite dimensionality of
the kernel of the curl operator, giving rise to a non-compact resolvent operator.

To overcome these difficulties several methods have been proposed. In general, there are two possibilities: either one
imposes the constraint of divergence-freeness on the problem, or one looks for an easy identification of the eigenvectors
from the kernel of the curl operator. In order to impose the divergence-free constraint on the problem one may try to
incorporate this property in the definition of the discrete function spaces. Several authors, however, prefer to impose this
constraint implicitly, using a mixed formulation. In this paper we will follow this last approach.

2. Mixed finite element formulation

In order to state a variational and mixed formulation, we begin with

Definition 1. We consider the following function spaces:

H0,Γτ (curl;Ω) =
{
v ∈ L2(Ω) : ∇ × v ∈ L2(Ω), v× n|Γτ = 0

}
H0,Γτ (curl 0;Ω) =

{
v ∈ H0,Γτ (curl;Ω) : ∇ × v = 0

}
H0,Γτ ,Γν(curl; div 0;Ω) =

{
v ∈ H0,Γτ (curl;Ω) : ∇ · v = 0, (εv) · n|Γν = 0

}
W =

{
v ∈ L2(Ω) : (µ−1/2v,u) = 0,∀u ∈ H0,Γτ (curl 0;Ω)

}
.

Furthermore, for simplicity of notation we state

Definition 2. We consider the following inner products, norms and sesquilinear forms:

a(u, v) = (εu, v), ∀u, v ∈ L2(Ω)

γ(u, v) = (µ−1
∇ × u,∇ × v), ∀u, v ∈ H0,Γτ (curl;Ω)

b(u, v) = (µ−1/2
∇ × u, v), ∀u ∈ H0,Γτ (curl;Ω), v ∈ L2(Ω).

In [3], one shows that the appropriate variational formulation of Problem 1 is the following one:

Problem 2. Find (ω,u) ∈ R× H0,Γτ ,Γν(curl; div 0;Ω) such that

γ(u, v) = ω2a(u, v), ∀v ∈ H0,Γτ ,Γν(curl; div 0;Ω).

This is the so-called primal (or electrical) formulation. It is possible to use the dual (or magnetical) formulation using
analogous arguments.

The implementation of a finite element method based on Problem 2, however, is far from obvious due to the divergence-
free constraint appearing in the space of trial and test functions. The discretization of this constraint has been considered
in e.g. [5]. It turns out to be more tractable to consider a strongly related variational problem in which one uses the space
H0,Γτ (curl;Ω) instead of H0,Γτ ,Γν(curl; div 0;Ω). This approach has elaborately been considered in [3].

An alternative approach is to include the divergence-free constraint implicitly by passing to a suitable mixed finite
element formulation. As has been shown in [2], an equivalent mixed formulation of Problem 2 is the following:

Problem 3. Find (ω,u,p) ∈ R× H0,Γτ (curl;Ω)×W such that:{
a(u, τ)− b(τ,p) = 0 ∀τ ∈ H0,Γτ (curl;Ω)

b(u,q) = ω2(p,q) ∀q ∈ W.

Moreover, in [2], Problem 3 is proved to be equivalent with Problem 2 in the following sense:

Lemma 1. If (ω,u,p) is a solution of Problem 3, then (ω,u) is a solution of Problem 2. Conversely, if (ω,u) is a solution of
Problem 2, then (ω,u,ω−2µ−1/2

∇ × u) is a solution of Problem 3.

The convergence of this mixed finite element formulation can be obtained by studying the spectrum of a suitable operator
obtained from a related source problem. This operator is introduced as follows:
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