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Abstract

We study infinite dimensional quadratic programming problems of an integral type. The decision variable is taken in the Lp space
where 1 < p <∞. In this paper the decision variable is required to have a lower bound and an upper bound on a compact interval.
Two numerical algorithms are proposed for solving these problems, and the convergence properties of the proposed algorithms are
given. Two numerical examples are also given to implement the proposed algorithms.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Let X and Y be compact intervals. For p�1, the space Lp(X) consists of those real-valued measurable functions f
on the compact interval X for which |f (x)|p is a Lebesgue integrable function. The norm on this space is defined as
‖f ‖Lp = (

∫
X
|f (x)|p dx)1/p, and we call ‖f ‖Lp the Lp-norm of f. Now we consider the following infinite dimensional

quadratic programming problem. Let �(s, y) be a real-valued continuous function on X × Y , g(y) be a real-valued
continuous function on Y, h(s) be a real-valued continuous function on X, and f (s, t) be a real-valued continuous
function on X ×X. Then the infinite dimensional quadratic programming problem (P ) is as follows:

min
k∈Lp(X)

1

2

∫
X

∫
X

f (s, t)k(s) dsk(t) dt +
∫

X

h(s)k(s) ds

s.t.
∫

X

�(s, y)k(s) ds�g(y) for each y ∈ Y ,

0�M1 �k(s)�M2 a.e. on X.

Here, M1 and M2 are given constants. In this paper, we only consider the case that 1 < p <∞. This is an infinite
dimensional quadratic programming problem of an integral type. Lai and Wu [6] studied the infinite dimensional linear
programming problems on measure spaces, and the necessary and sufficient conditions for a measure to be optimal
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were established in their paper. Meanwhile, solving the general capacity problem by relaxed cutting plane approach can
be found in Fang et al. [3]. Ito et al. [5] considered infinite dimensional linear programs in L1 spaces, while Vanderbei
[11] investigated an optimization problem for the best high-contrast apodization. This is an infinite dimensional linear
programming problem in which the decision variable has a lower bound and an upper bound. Infinite dimensional
quadratic programming programs on measure spaces were proposed in Wu [12]. In that paper Wu provided a cutting
plane approach to solving quadratic infinite programs on measure spaces. In this paper, we study infinite dimensional
quadratic programming problems in the Lp space where 1 < p <∞, and we require that the decision variable in the
Lp space where 1 < p <∞ has a lower bound and an upper bound on a compact interval. These types of problems are
related to Vanderbei’s study. Here, we also review [1,2,4,7,10] for our research of this paper.

In the following, Lq(X), 1 < q <∞ and 1/p+1/q=1, is considered as the primal space. Thus, Lp(X), 1 < p <∞
and 1/p+ 1/q = 1, is the dual space of Lq(X). In this situation, Lq(X) is a separable Banach space, and therefore any
weak∗ compact subset of Lp(X) in the weak∗ topology is metrizable from the result of Theorem 3.16 in Rudin [9].
Consequently, any weak∗ compact subset of Lp(X) is sequentially compact in the weak∗ topology.

Now, we state a proposition which is useful for this paper as follows:

Proposition 1.1. Suppose that f ∈ C(X×X). If for any k ∈ Lp(X) and every sequence {kn} such that limn→∞ kn=k

in the weak∗ topology, then we have:

lim
n→∞

∫
X

∫
X

f (s, t)kn(s) dskn(t) dt =
∫

X

∫
X

f (s, t)k(s) dsk(t) dt .

The proof of Proposition 1.1 mainly applies basic ideas of uniform continuity and uniform convergence, so we omit
the proof. Here, we denote by F the feasible set of (P ). By the second constraint of (P ), there exists an M > 0 such
that ‖k‖Lp �M for each k ∈ F . Hence, F is bounded in the Lp-norm. We define the set BM as follows:

BM = {k ∈ Lp(X) : ‖k‖Lp �M}.
Note that the set BM is weak∗ compact in the weak∗ topology. Then we have the following theorem.

Theorem 1.1. Suppose that F �= �. Then (P ) has an optimal solution.

Proof. Since the primal space Lq(X) is a separable Banach space, BM is metrizable. Let k be in the weak∗ closure
of F. Note that F ⊂ BM . There exists a sequence {ki} ⊂ F such that limi→∞ ki = k in the weak∗ topology. Since
{ki} ⊂ F , it follows that

∫
X

�(s, y)ki(s) ds�g(y) for each y ∈ Y . Here, we consider � ∈ C(X × Y ). Hence,
�(s, y) ∈ C(X) for each fixed y ∈ Y . Consequently, �(s, y) ∈ Lq(X) for each fixed y ∈ Y . Applying limi→∞ ki = k

in the weak∗ topology, we have limi→∞
∫
X

�(s, y)ki(s) ds=∫
X

�(s, y)k(s) ds for each y ∈ Y . Hence, the inequalities∫
X

�(s, y)k(s) ds�g(y) for each y ∈ Y follow.
Now we want to prove that M1 �k(s)�M2 a.e. on X and we will do so by contradiction. There are two cases which

may occur.
Case 1: There would exist a measurable subset A ⊂ X of Lebesgue measure greater than 0, such that k(s) < M1 for

each s ∈ A.
Case 2: There would exist a measurable subset B ⊂ X of Lebesgue measure greater than 0, such that k(s) > M2 for

each s ∈ B.
First we deal with Case 1. We denote the Lebesgue measure of A by L(A). Then the characteristic function �A is in

Lq(X). Thus, we have
∫

X

�A(s)k(s) ds = lim
i→∞

∫
X

�A(s)ki(s) ds. (1)

This implies that∫
A

k(s) ds = lim
i→∞

∫
A

ki(s) ds� lim
i→∞

∫
A

M1 ds =M1L(A). (2)

From the definition of A, it follows that
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