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Abstract

We introduce the RKGL method for the numerical solution of initial-value problems of the form y′=f (x, y), y(a)=�. The method
is a straightforward modification of a classical explicit Runge–Kutta (RK) method, into which Gauss–Legendre (GL) quadrature has
been incorporated. The idea is to enhance the efficiency of the method by reducing the number of times the derivative f (x, y) needs
to be computed. The incorporation of GL quadrature serves to enhance the global order of the method by, relative to the underlying
RK method. Indeed, the RKGL method has a global error of the form Ahr+1+Bh2m, where r is the order of the RK method and m
is the number of nodes used in the GL component. In this paper we derive this error expression and show that RKGL is consistent,
convergent and strongly stable.
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1. Introduction

The numerical solution to the initial-value problem (IVP)

y′ = f (x, y), y(a)= � (1)

on some interval [a, b] is often obtained using a Runge–Kutta (RK) method [3,4]. These methods are consistent,
convergent, stable and are easily programmed, and, as such, are usually the method of choice for problems as in (1).
It is true, however, that RK methods of high order (more accurate) require greater computational effort [2]. In this
paper we describe a straightforward modification to a classical explicit RK method, designed to improve the efficiency
of the method. The resulting method is designated the RKGL method, or RKrGLm (this notation will become clear
later).
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2. Terminology, notation and relevant concepts

Here we describe notation, terminology and concepts relevant to the rest of the paper.

• We denote an explicit RK method by

yi+1 = yi + hF(xi, yi). (2)

For example, if we have

k1 = f (x, y), k2 = f
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corresponds to the classical fourth-order RK method.
• The true value of y at xi is denoted by y(xi) and the approximate value of y at xi is denoted by yi .
• The global error �i in yi is defined by

yi = y(xi)+ �i . (6)

• Gauss–Legendre (GL) quadrature on the interval [−1, 1] is given by [1,6]∫ 1

−1
f (x) dx ≈

m∑
i=1

Wif (xi). (7)

Here, there are m nodes on the interval [−1, 1], and Wi are appropriate weights. On an arbitrary interval GL
quadrature is∫ v

u

f (x), dx ≈ (v − u)

2

m∑
i=1

Wif (x̃i)= h

m∑
i=1

Ŵm
i f (x̃i), (8)

where Ŵm
i �(m+1)Wi/2, and h denotes the average length of the subintervals into which [u, v] is subdivided by the

nodes x̃i . We have used the symbol x̃i for the nodes on [u, v] to differentiate from the nodes xi on [−1, 1]; indeed,
x̃i = (u + v + (v − u)xi)/2. However, in the remainder of this paper xi will be used as a generic symbol for the
nodes.
• GL quadrature on an interval using m nodes is denoted by GLm.
• It is a simple matter to show that the error in GLm quadrature is O(h2m+1) (see Appendix).
• The RK method of global order r is denoted by RKr. Such a method has global error O(hr) and local error O(hr+1).
• The method denoted by RKrGLm is a method involving RKr and GLm.
• The parameter p is defined as p�m+ 1.

3. The RKGL method

In this section we describe the RKGL algorithm. To begin with, consider a subinterval of [a, b] on which discrete
nodes {a= x0, x1, . . . , xm} have been defined. We use RKr to find a solution at the m nodes {x1, . . . , xm}. The solution



Download English Version:

https://daneshyari.com/en/article/4642396

Download Persian Version:

https://daneshyari.com/article/4642396

Daneshyari.com

https://daneshyari.com/en/article/4642396
https://daneshyari.com/article/4642396
https://daneshyari.com

