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Abstract

New families of approximations to Sturm—Liouville spectral density functions are derived for cases where the potential function
has one of several specific forms. This particular form dictates the type of expansion functions used in the approximation. Error
bounds for the residuals are established for each case. In the case of power potentials the approximate solutions of an associated
terminal value problem at oo are shown to be asymptotic power series expansions of the exact solution. Numerical algorithms have
been implemented and several examples are given, demonstrating the utility of the approach.
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1. Introduction

In this paper we extend the analysis in [7] to specific classes of potentials, for which iteration schemes yielding
recurrence relations for high order approximations for the solution of the terminal value problem of [7, Section 1] can
be obtained. The Sturm-Liouville problem considered is

—u" +qu=Iu, a<x<oo, (1.1)
u(a)coso 4+ u'(a)sina =0, oel0,n], (1.2)

under the assumptions

q € Lila, 00), (1.3)
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or
q/ € Li(a,00), ¢q € ACjocla, 00), lim g(x)=0. (1.4)
X—> 00

Under these assumptions, Corollary 1 or Corollary 2 of [7] apply to ensure existence and uniqueness of solutions of
the terminal value problem for P, Q, R. Letting y(x, 1) = y,(x, 1) be the solution of (1.1) fixed by the initial conditions

yala, ) = —sina, y,(a, ) =coso (1.5)

we seek functions Py (x, 1), On(x, 1), Ry(x, 1), N — oo, satisfying the terminal conditions at oo ((2.2) below), and
for which
1

[Py (x, Dy (x, )% + Qn(x, Dy (x, Dy (x, 2) + Ry (x, )y’ (x, 2)°]

FN() = (1.6)
gives increasingly more accurate approximations to the spectral density function f (1) as N — oo.

In [6] we took the constant values P (x, 2) = /1, Qx,4A)=0,and R(x, ) =1/ V7, corresponding to the classical
formula of Titchmarsh and Weyl, and demonstrated numerically the efficacy of this choice when x was chosen suffi-
ciently large. In [7] we improved on this by deriving a sequence of more sophisticated formulas for P, Q, R in terms
of the general potential g and its derivatives; these usually allowed smaller values of x to be used for a given accuracy
compared to the methods in [6], but did not take advantage of special forms of ¢. In this paper we assume g takes on
one of the following special forms:

e decaying exponential: g(x) = A exp(—ox) for some o > 0. The difficult examples are when o = 0;
e power function: g(x) = A/x% for E a positive rational number;
e product of a power and a trigonometric function: ¢ (x) = [A cos wx + B sin wx]/x% for E a positive integer.

The latter class includes many examples that occur in the study of resonances and gives rise to points of spectral
concentration [4].

In the next section we summarize the theoretical results from [7] that are being utilized in this paper. In Section 3 we
obtain general error bounds for the approximate solutions in terms of the residuals defined by (2.5) below. In Sections
4 and 5 we derive the approximation formulas and recurrence relations for slowly decaying exponential functions, and
power potentials with E a positive integer. In Section 6 we prove that the approximate solutions in the case of power
potentials are asymptotic power series expansions of the exact solution of the terminal value problem (2.1)—(2.2) below.
In Sections 7 and 8 we derive the approximate solutions and recurrence relations for power potentials with E rational,
and products of power potentials with trigonometric functions. In Section 9 some numerical examples for each class
of potential are given, and in Section 10 come clues for possible generalization of the basic method to other classes of
problems are given. Our numerical experience for the cases of slowly decaying exponential functions, power potentials
with positive rational E, and products of power and trigonometric functions is that we retain convergence of F, )gv to f
for fixed N as x — o0, but that for fixed x, F' )gv is divergent as N — oo; in other words, the behavior is similar to the
case of asymptotic power series for the power potentials when N a positive integer. The main advantage of adapting
the approximate solutions to the given form of potential is that the values of x needed for a given accuracy can be much
smaller than those for the methods in [6,7].

2. Mathematical background

In this section the theory of [7] is reviewed, showing that it is sufficiently general to cover the new approximations
obtained for our specific classes of potentials. First, taking the residual terms to be exactly zero in the first order linear
system for P, Q, R we seek functions P (x, 4), Q(x, 2), and R(x, ) satisfying the differential equations

P'=(—q(x)0,

Q' =-2P+2(L—qx))R,
R =-0, 2.1)
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