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Abstract

In this paper, we study two types of genuinely nonlinear K(n, n) equations and a generalized KP equation. By developing
a mathematical method based on the reduction of order of nonlinear differential equations, we derive general formulas for the
travelling wave solutions of the three equations. The compactons, solitary patterns, solitons and periodic solutions obtained are
expressed analytically. It is shown that the y and z components of the wave number vectors in the travelling wave solutions of the
generalized KP equation remain free and arbitrary constants. The work generalizes the known results of travelling wave solutions
for the three equations.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Recently, intensive research has been conducted to study the following K(n, n) evolution equation

ut + a(un)x + (un)xxx = 0, n�1, (1)

which describes the role of nonlinear dispersion in the formation of patterns in liquid drops (see [10,13]). The studies,
as presented in [5–10,12–14], discovered that nonlinear dispersion can compactify solitary waves and generate com-
pactons: solitons with finite wavelength or robust soliton-like solutions characterized by the absence of infinite wings.
The discovery of compactons that collide elastically and vanish identically outside a finite core region was made in [10]
to specify and establish a scientific explanation that nonlinear dispersion leads to qualitative changes [5] in the nature
of some genuinely nonlinear phenomena. The tri-Hamiltonian duality between solitons and compactons was reported
in Olver and Rosenau [5]. Rosenau and coworkers [5,6,8,10] found that the collision of two compactons results in the
creation of low-amplitude compacton and anticompacton pairs, and they reemerge with same coherent shape.
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Various attempts to study Eq. (1) have been made in recent years. Rosenau and Hyman [10] used the pseudo-spectral
method in space and a variable order, variable time-step Adams–Basford–Moulton method in time to study Eq. (1).
Wazwaz [12] made use of the Adomian decomposition method to study Eq. (1), particularly, the cases K(2, 2) and
K(3, 3), and derived a general formula of compacton solutions of Eq. (1) for n > 1. Ismail and Taha [3] developed a
finite difference method and a finite element method to study Eq. (1) for n=2 and 3, and obtained numerical solutions for
one compacton which were then compared with the exact solutions to assess the accuracy of the methods. It was shown
in [3] that the numerical solutions agreed very well with the exact solutions and that the compactons exhibited true
soliton behavior. For more details of the methods to acquire compactons and soliton solutions for nonlinear evolution
equations, the reader is referred to [1–3,9,11–15] in which many analytical and numerical methods such as the pseudo-
spectral method, the Galerkin method, the finite difference method, the sine–cosine ansatz, and the tanh method are
presented.

Rosenau [9] and Wazwaz [13] investigated the following models:

ut + a(un+1)x + [u(un)xx]x = 0, a > 0, n�1, (2)

and

{ut + a(un+1)x + [u(un)xx]x}x + ∇2�u = 0, a > 0, n�1, (3)

where∇2� = (k(k − 1)/k!)�2
y + (k(k − 1)(k − 2)/k!)�2

z, k = 2 or 3, in which k represents the dimension of the
spatial domain. Rosenau [9] regarded Eq. (2) as another variant of the K(n, n) model which was shown to describe
the dispersion of dilute suspensions [9] for n = 1. Eq. (3) is a generalized form of the well-known KP equation. In [9],
some meaningful results were obtained to explore a number of formal mathematical extensions of solitons supporting
equations with the aim of producing compact dispersive structures in higher dimensions, and several non-travelling
wave solutions for the generalized KP equation were constructed by a mathematical transformation formula.

Motivated by the form of Eq. (3), we write another generalized type of KP equation expressed in the form

{ut + a(un+1)x + [u(un)xx]x}x + b1uyy + b2uzz = 0, a �= 0, n �= 0, (4)

where constants b1 and b2 satisfy b2
1 + b2

2 �= 0. Obviously, Eq. (4) reduces to Eq. (3) for b1 = k(k − 1)/k! and
b2 = b1(k − 2).

In this paper, we further develop the work in [10,9,12,13] for the study of Eqs. (1), (2) and (4). By using a mathematical
technique different from those in previous work [5–10,12–15], we obtain general formulas for travelling wave solutions
with wave variable � = �(x − ct) or � = �x + �y + �z − ct for three nonlinear Eqs. (1), (2) and (4). For K(n, n)

equations (1) and (2), we find that the exponent n and a, positive or negative, determine directly the physical structures
of solutions such as compactons, solitons, solitary patterns and periodic solutions.

2. Solving K(n, n) equation with positive and negative n

Firstly, we consider the solution of the equation(
dW

dz

)2

= a0 − b0W
2, (5)

where a0 �= 0 and b0 �= 0 are constants. When b0 > 0, Eq. (5) admits two solutions

W1 = ±
√

a0

b0
sin[√b0(z + A)], W2 = ±

√
a0

b0
cos[√b0(z + A)], (6)

where A is an arbitrary constant.
When b0 < 0, noticing that cosh2 z − sinh2 z = 1, we know that Eq. (5) has two solutions of the form

W3 = ±
√

−a0

b0
sinh[√−b0(z + A)], W4 = ±i

√
−a0

b0
cosh[√−b0(z + A)], (7)

where i = √−1.
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