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Abstract

After sketching the basic principles of renewal theory and recalling the classical Poisson process, we discuss two renewal processes
characterized by waiting time laws with the same power asymptotics defined by special functions of Mittag–Leffler and of Wright
type. We compare these three processes with each other.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The Poisson process is well known to play a fundamental role in renewal theory. In the present paper, by using special
functions of Mittag–Leffler and Wright type in the definitions of waiting time distributions, we provide a generalization
and a variant to this classical process. These distributions, characterized by power-law asymptotics in contrast to the
exponential law of the Poisson process, have been studied by several authors both from mathematical and physical
point of view, see e.g., [2,10–12,14,21] and references therein.

The structure of our paper is as follows. In Section 2, we recall the basic renewal theory including its fundamental
concepts like waiting time between events, the survival probability, the renewal function. If the waiting time is expo-
nentially distributed we have the classical Poisson process, which is Markovian: this is the topic of Section 3. However,
other waiting time distributions are also relevant in applications, in particular such ones having a power-law decay
of their density. In this context we analyse, respectively, in Sections 4 and 5, two non-Markovian renewal processes
with waiting time distributions described by functions of Mittag–Leffler and Wright type: both depend on a parameter
� ∈ (0, 1) related to the common exponent in the power law. In the limit � = 1 the first becomes the Poisson pro-
cess whereas the second goes over into the deterministic process producing its events at equidistant instants of time.
In Section 6, after sketching the differences between the renewal processes of Mittag–Leffler and Wright type, we
compare numerically their survival functions and their probability densities in the special case � = 1

2 with respect to
the corresponding functions of the classical Poisson process. Concluding remarks are given in Section 7.
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2. Essentials of renewal theory

We present a brief introduction to the renewal theory by using our notation. For more details see e.g., the classical
treatises by Cox [3], Feller [5], and the more recent book by Ross [23]. We begin to recall that a stochastic process
{N(t), t �0} is called a counting process if N(t) represents the total number of “events” that have occurred up to
time t. It is called a renewal process if the times between successive events, T1, T2, . . . , are independent identically
distributed (iid) non-negative random variables, obeying a given probability law. We call these times waiting times
(or inter-arrival times) and the instants t0 = 0, tk = ∑k

j=1Tj (k = 1, 2, . . .) renewal times. Let the waiting times be
distributed like T and let

�(t) := P(T � t) (2.1)

be the common probability distribution function, that we assume to be absolutely continuous. Then the corresponding
probability density function1 �(t) and the probability distribution function �(t) are related by

�(t) = d

dt
�(t), �(t) =

∫ t

0
�(t ′) dt ′. (2.2)

We recall that �(t)�0 with
∫ ∞

0 �(t) dt = 1 and �(t) is a non-decreasing function in R+ with �(0) = 0, �(+∞) = 1.
Often, especially in Physics, the probability density function is abbreviated by pdf, so that, in order to avoid confusion,
the probability distribution function is called the probability cumulative function and abbreviated by pcf. When the
non-negative random variable represents the lifetime of a technical system, it is common practice to call �(t) the failure
probability and

�(t) := P(T > t) =
∫ ∞

t

�(t ′) dt ′ = 1 − �(t), (2.3)

the survival probability, because �(t) and �(t) are the respective probabilities that the system does or does not fail in
(0, t]. These terms, however, are commonly adopted for any renewal process.

As a matter of fact, the renewal process is defined by the counting process

N(t) :=
{

0 for 0� t < t1,

max{k|tk � t, k = 1, 2, . . .} for t � t1.
(2.4)

N(t) is thus the random number of renewals occurring in (0, t]. We easily recognize that �(t)=P(N(t)=0). Continuing
in the general theory, we set F1(t) = �(t), f1(t) = �(t), and in general

Fk(t) := P(tk = T1 + · · · + Tk � t), fk(t) = d

dt
Fk(t), k�1. (2.5)

Fk(t) is the probability that the sum of the first k waiting times does not exceed t, and fk(t) is the corresponding
density. Fk(t) is normalized because limt→∞ Fk(t) = P(tk = T1 + · · · + Tk < ∞) = �(+∞) = 1. In fact, the sum of
k random variables each of which is finite with probability 1 is finite with probability 1 itself. We set for consistency
F0(t) = �(t), the Heaviside unit step function (with �(0) := �(0+)) so that F0(t) ≡ 1 for t �0, and f0(t) = �(t), the
Dirac delta generalized function.

A relevant quantity is the function vk(t) that represents the probability that k events occur in the interval (0, t]. We
get, for any k�0,

vk(t) := P(N(t) = k) = P(tk � t, tk+1 > t) =
∫ t

0
fk(t

′)�(t − t ′) dt ′. (2.6)

For k = 0 we recover v0(t) = �(t).

1 Let us remark that, as it is popular in Physics, we use the word density also for generalized functions that can be interpreted as probability
measures. In these cases the function �(t) may lose its absolute continuity.
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