



JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS

Journal of Computational and Applied Mathematics 206 (2007) 1007 – 1014

www.elsevier.com/locate/cam

# A class of logarithmically completely monotonic functions and the best bounds in the first Kershaw's double inequality

Feng Qia, b, \*, 1

<sup>a</sup> College of Mathematics and Information Science, Henan University, Kaifeng City, Henan Province 475001, China <sup>b</sup>Research Institute of Mathematical Inequality Theory, Henan Polytechnic University, Jiaozuo City, Henan Province 454010, China

Received 8 June 2006; received in revised form 14 September 2006

#### **Abstract**

In the article, the logarithmically complete monotonicity of a class of functions involving Euler's gamma function are proved, a class of the first Kershaw-type double inequalities are established, and the first Kershaw's double inequality and Wendel's inequality are generalized, refined or extended. Moreover, an open problem is posed.

© 2006 Elsevier B.V. All rights reserved.

MSC: primary 33B15; 65R10; secondary 26A48; 26A51; 26D20

*Keywords:* Gamma function; Logarithmically completely monotonic function; Best bound; The first Kershaw's double inequality; J.G. Wendel's inequality; Refinement; Generalization; Extension; Open problem

#### 1. Introduction

It is well known that the classical Euler's gamma function  $\Gamma$  can be defined for x > 0 as  $\Gamma(x) = \int_0^\infty e^{-t} t^{x-1} dt$ . The digamma or psi function  $\psi$  is defined as the logarithmic derivative of  $\Gamma$  and  $\psi^{(i)}$  for  $i \in \mathbb{N}$  are called polygamma functions.

The ratio  $\Gamma(s)/\Gamma(r)$  has been researched by many mathematicians in the past more than fifty years. Wendel [30] gave for 0 < b < 1 and x > 0 the following double inequality:

$$\left(\frac{x}{x+b}\right)^{1-b} \leqslant \frac{\Gamma(x+b)}{x^b \Gamma(x)} \leqslant 1. \tag{1}$$

Gautschi showed in [8] for 0 < s < 1 and  $n \in \mathbb{N}$  that

$$n^{1-s} < \frac{\Gamma(n+1)}{\Gamma(n+s)} < \exp[(1-s)\psi(n+1)]. \tag{2}$$

0377-0427/\$ - see front matter © 2006 Elsevier B.V. All rights reserved. doi:10.1016/j.cam.2006.09.005

<sup>\*</sup> Corresponding author at: Research Institute of Mathematical Inequality Theory, Henan Polytechnic University, Jiaozuo City, Henan Province 454010, China. Tel./fax: +86 391 3987792.

E-mail addresses: qifeng@hpu.edu.cn, fengqi618@member.ams.org, qifeng618@hotmail.com, qifeng618@msn.com, 316020821@qq.com URL: http://rgmia.vu.edu.au/qi.html.

<sup>&</sup>lt;sup>1</sup> The author was supported in part by the Science Foundation of the Project for Fostering Innovation Talents at Universities of Henan Province, China.

A strengthened upper bound was given by Erber in [7]:

$$\frac{\Gamma(n+1)}{\Gamma(n+s)} < \frac{4(n+s)(n+1)^{1-s}}{4n+(s+1)^2}, \quad 0 < s < 1, \quad n \in \mathbb{N}.$$
 (3)

Kečkić and Vasić gave in [12] the inequalities below:

$$\frac{b^{b-1}}{a^{a-1}} \cdot e^{a-b} < \frac{\Gamma(b)}{\Gamma(a)} < \frac{b^{b-1/2}}{a^{a-1/2}} \cdot e^{a-b}, \quad 0 < a < b. \tag{4}$$

The following closer bounds were proved for 0 < s < 1 and  $x \ge 1$  by Kershaw in [13]:

$$\left(x + \frac{s}{2}\right)^{1-s} < \frac{\Gamma(x+1)}{\Gamma(x+s)} < \left[x - \frac{1}{2} + \left(s + \frac{1}{4}\right)^{1/2}\right]^{1-s},$$
 (5)

$$\exp[(1-s)\psi(x+s^{1/2})] < \frac{\Gamma(x+1)}{\Gamma(x+s)} < \exp\left[(1-s)\psi\left(x+\frac{s+1}{2}\right)\right]. \tag{6}$$

Let s and t be nonnegative numbers,  $\alpha = \min\{s, t\}$ , and

$$z_{s,t}(x) = \begin{cases} \left[\frac{\Gamma(x+t)}{\Gamma(x+s)}\right]^{1/(t-s)} - x, & s \neq t, \\ e^{\psi(x+s)} - x, & s = t \end{cases}$$

$$(7)$$

in  $x \in (-\alpha, \infty)$ . In [5,6,27], a monotonicity and convexity of  $z_{s,t}(x)$  was obtained: The function  $z_{s,t}(x)$  is either convex and decreasing for |t-s| < 1 or concave and increasing for |t-s| > 1. From this, the best bounds in the first Kershaw's double inequality (5) were deduced.

For a and b being two constants, as  $x \to \infty$ , the following asymptotic formula is given in [1, pp. 257, 259]:

$$x^{b-a} \frac{\Gamma(x+a)}{\Gamma(x+b)} = 1 + \frac{(a-b)(a+b-1)}{2x} + O\left(\frac{1}{x^2}\right).$$
 (8)

For recent development and more detailed information on this topic, please refer to, for example, [5,6,16,27] and the references therein.

Recall [18,31] that a function f is said to be completely monotonic on an interval I if f has derivatives of all orders on I and  $(-1)^n f^{(n)}(x) \geqslant 0$  for  $x \in I$  and  $n \geqslant 0$ . Recall [23–25] also that a function f is called logarithmically completely monotonic on an interval I if f has derivatives of all orders on I and its logarithm  $\inf f$  satisfies  $0 \le (-1)^k [\inf f(x)]^{(k)}$  for all  $k \in \mathbb{N}$  on I. For our own convenience, the sets of the completely monotonic functions and the logarithmically completely monotonic functions on I are denoted, respectively, by  $\mathscr{C}[I]$  and  $\mathscr{L}[I]$ . In [3,18,23–26], it has been proved that  $\mathscr{L}[I] \subset \mathscr{C}[I]$ . The well-known Bernstein's Theorem [31, p. 161] states that  $f \in \mathscr{C}[(0, \infty)]$  if and only if there exists a bounded and nondecreasing function  $\eta(t)$  such that the integral  $f(x) = \int_0^\infty e^{-xt} \, d\eta(t)$  converges for  $0 < x < \infty$ . In [3, Theorem 1.1, 9] it is pointed out that the logarithmically completely monotonic functions on  $(0, \infty)$  can be characterized as the infinitely divisible completely monotonic functions studied by Horn in [11, Theorem 4.4]. For more information on the classes  $\mathscr{C}[I]$  and  $\mathscr{L}[I]$ , please refer to [2,3,9,18,20,23–27,29] and the references therein.

For x > 0 and a > 0, let

$$h_a(x) = \frac{(x+a)^{1-a}\Gamma(x+a)}{x\Gamma(x)} \quad \text{and} \quad f_a(x) = \frac{\Gamma(x+a)}{x^a\Gamma(x)},\tag{9}$$

where  $\Gamma$  is the classical Euler's gamma function. In [21,22], among other things, the logarithmically completely monotonic properties of the functions  $h_a(x)$  and  $f_a(x)$  are obtained:

- (1)  $\lim_{x\to 0+} h_a(x) = \Gamma(a+1)/a^a$  and  $\lim_{x\to \infty} h_a(x) = 1$  for any a > 0;
- (2)  $h_a(x) \in \mathcal{L}[(0, \infty)] \text{ if } 0 < a < 1;$
- (3)  $[h_a(x)]^{-1} \in \mathcal{L}[(0, \infty)] \text{ if } a > 1;$
- (4)  $\lim_{x\to\infty} f_a(x) = 1$  for any  $a \in (0, \infty)$ ;

### Download English Version:

## https://daneshyari.com/en/article/4642559

Download Persian Version:

https://daneshyari.com/article/4642559

Daneshyari.com