

Available online at www.sciencedirect.com

JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS

Journal of Computational and Applied Mathematics 208 (2007) 120-154

www.elsevier.com/locate/cam

CMV matrices: Five years after[☆]

Barry Simon

Department of Mathematics, California Institute of Technology, Pasadena, CA 91125, USA

Received 20 February 2006

Abstract

CMV matrices are the unitary analog of Jacobi matrices; we review their general theory. © 2006 Elsevier B.V. All rights reserved.

MSC: 05E35; 47A68; 15A52 *Keywords*: CMV matrix; Spectra

1. Introduction

The Arnold Principle: If a notion bears a personal name, then this name is not the name of the inventor.

The Berry Principle: The Arnold Principle is applicable to itself. V.I. Arnold, On Teaching Mathematics, 1997 [8] (Arnold says that Berry formulated these principles.)

In 1848, Jacobi [45] initiated the study of quadratic forms $J(x_1, ..., x_n) = \sum_{k=1}^n b_k x_k^2 + 2\sum_{k=1}^{n-1} a_k x_k x_{k+1}$, that is, essentially $n \times n$ matrices of the form

$$J = \begin{pmatrix} b_1 & a_1 & 0 & \dots & 0 \\ a_1 & b_2 & a_2 & \dots & 0 \\ 0 & a_2 & b_3 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & \dots & a_{n-1} & b_n \end{pmatrix}$$
(1.1)

and found that the eigenvalues of J were the zeros of the denominator of the continued fraction

$$\frac{1}{b_1 - z - \frac{a_1^2}{b_2 - z - \frac{a_2^2}{\dots}}}.$$
(1.2)

[☆] Supported in part by NSF Grant DMS-0140592. Submitted to the Proceedings of the W.D. Evans' 65th Birthday Conference. *E-mail address:* bsimon@caltech.edu.

In the era of the birth of the spectral theorem, Toeplitz [79], Hellinger–Toeplitz [44], and especially Stone [75] realized that Jacobi matrices were universal models of self-adjoint operators, A, with a cyclic vector, φ_0 .

To avoid technicalities, consider the case where A is bounded, and suppose initially that \mathcal{H} is infinite-dimensional. By cyclicity, $\{A^k \varphi_0\}_{k=0}^{\infty}$ are linearly independent, so by applying Gram-Schmidt to φ_0 , $A\varphi_0$, $A^2\varphi_0$, ..., we get polynomials $p_j(A)$ of degree exactly j with positive leading coefficients so that

$$\varphi_i = p_i(A)\varphi_0 \tag{1.3}$$

are an orthonormal basis for \mathcal{H} . By construction,

$$\varphi_i \perp \varphi_0, A\varphi_0, \ldots, A^{j-1}\varphi_0$$

so

$$\langle \varphi_i, A\varphi_k \rangle = 0, \quad j \geqslant k+2.$$
 (1.4)

Because A is self-adjoint, we see $\langle \varphi_j, A\varphi_k \rangle = 0$ also if $j \leq k-2$. Thus, the matrix $\langle \varphi_j, A\varphi_k \rangle$ has exactly form (1.1) where $a_j > 0$ (since $p_j(A)$ has leading positive coefficient).

Put differently, for all A, φ_0 , there is a unitary $U: \mathcal{H} \to \ell^2$ (given by Fourier components in the φ_j basis), so UAU^{-1} has the form J and $\varphi_0 = (1, 0, 0, \dots)^t$. The Jacobi parameters, $\{a_n, b_n\}_{n=1}^{\infty}$, are intrinsic, which shows there is exactly one J (with $\varphi_0 = (1, 0, 0, \dots)^t$) in the unitary equivalence class of (A, φ_0) .

There is, of course, another way of describing unitary invariants for (A, φ_0) : the spectral measure $d\mu$ defined by

$$\int x^n \, \mathrm{d}\mu(x) = \langle \varphi_0, A^n \varphi_0 \rangle. \tag{1.5}$$

There is a direct link from $d\mu$ to the Jacobi parameters: the $p_j(x)$ are orthonormal polynomials associated to $d\mu$, and the Jacobi parameters are associated to the three-term recursion relation obeyed by the p's:

$$xp_{j}(x) = a_{j+1}p_{j+1} + b_{j+1}p_{j}(x) + a_{j}p_{j-1}(x)$$

$$(1.6)$$

(where $p_{-1} \equiv 0$).

Here we are interested in the analog of these structures for unitary matrices. We begin by remarking that for a general normal operator, N, the right form of cyclicity is that $\{N^k(N^*)^\ell \varphi_0\}_{k,\ell=0}^\infty$ is total. Since $A=A^*$, only $\{A^k \varphi_0\}_{k=0}^\infty$ enters. Since $U^*=U^{-1}$, for unitaries $U^k(U^*)^\ell=U^{k-\ell}$ and the right notion of cyclicity is that $\{U^k \varphi_0\}_{k=-\infty}^\infty$ is total. Some parts of the above fourfold equivalence:

- (1) unitary equivalence classes of (A, φ_0) ;
- (2) spectral measures, that is, probability measures $d\mu$ on \mathbb{R} with bounded support and infinite support;
- (3) Jacobi parameters;
- (4) Jacobi matrices

are immediate for the unitary case. Namely, (1) \Leftrightarrow (2) holds since there is a spectral theorem for unitaries, and so, a one–one correspondence between unitary equivalence classes of (U, φ_0) on infinite-dimensional spaces and probability measures on $\partial \mathbb{D}$ ($\mathbb{D} = \{z | | z| < 1\}$) with infinite support.

More subtle is the analog of Jacobi parameters. Starting from such a probability measure on $\partial \mathbb{D}$, one can form the monic orthogonal polynomials $\Phi_n(z)$ and find (see [77]; see also [69, Section 1.5]) $\{\alpha_n\}_{n=0}^{\infty} \in \mathbb{D}^{\infty}$, so

$$z\Phi_n(z) = \Phi_{n+1}(z) + \bar{\alpha}_n z^n \overline{\Phi_n(1/\bar{z})}. \tag{1.7}$$

While Verblunsky [81] defined the α_n in a different (albeit equivalent) way, he proved a theorem (called Verblusnky's theorem in [69]; see also [68]) that says this map $d\mu \to \{\alpha_n\}_{n=0}^{\infty}$ is one—one and onto all of \mathbb{D}^{∞} , so (1)–(3) for the unitary case have been well understood for 65 years.

Download English Version:

https://daneshyari.com/en/article/4642582

Download Persian Version:

https://daneshyari.com/article/4642582

<u>Daneshyari.com</u>