

Available online at www.sciencedirect.com

JOURNAL OF COMPUTATIONAL AND **APPLIED MATHEMATICS**

Journal of Computational and Applied Mathematics 208 (2007) 164 – 175

www.elsevier.com/locate/cam

A continuum of unusual self-adjoint linear partial differential operators

W.N. Everitt^{a,*}, L. Markus^b, M. Muzzulini^c, M. Plum^c

^a*School of Mathematics, University of Birmingham, Edgbaston, Birmingham B15 2TT, England, UK* ^b*School of Mathematics, University of Minnesota, Minneapolis, MN 55455-0487, USA* ^c*Mathematisches Institut I, Universität Karlsruhe, D-76128, Germany*

Received 7 October 2005

Dedicated to Professor W.D. Evans on the occasion of his 65th birthday

Abstract

In an earlier publication a linear operator *T*Har was defined as an unusual self-adjoint extension generated by each linear elliptic partial differential expression, satisfying suitable conditions on a bounded region Ω of some Euclidean space. In this present work the authors define an extensive class of T_{Har} -like self-adjoint operators on the Hilbert function space $L_2(\Omega)$; but here for brevity we restrict the development to the classical Laplacian differential expression, with Ω now the planar unit disk. It is demonstrated that there exists a non-denumerable set of such *T*Har-like operators (each a self-adjoint extension generated by the Laplacian), each of which has a domain in $L_2(\Omega)$ that does not lie within the usual Sobolev Hilbert function space $W^2(\Omega)$. These T_{Har} -like operators cannot be specified by conventional differential boundary conditions on the boundary of $\partial\Omega$, and may have non-empty essential spectra.

© 2006 Published by Elsevier B.V.

MSC: primary 35J40; 35J67; 35P05; secondary 32A36; 32A40; 47B25

Keywords: Linear partial differential equations; Self-adjoint partial differential equations; Spectral theory

1. Introduction

The *Harmonic operator* T_{Har} and the *Dirichlet operator* T_{Dir} are defined as self-adjoint linear partial differential operators (see the brief review in Section 2, with full details in the Memoir [\[3, Definitions 4.1 and 4.2\]\)](#page--1-0), which are extensions generated from any given linear elliptic partial differential expression of even order $n \geq 2$, satisfying certain reasonable conditions in a bounded region Ω with smooth boundary $\partial \Omega$, in Euclidean space \mathbb{E}^r for $r \geq 2$.

Further investigations have shown that, see [\[6\]](#page--1-0) for details, T_{Har} has a non-empty essential spectrum in the form of an eigenvalue of infinite multiplicity at the origin $0 \in \mathbb{C}$, in contradistinction to the known properties of T_{Dir} with its familiar discrete spectrum.

[∗] Corresponding author. Tel.: +44 121 414 6587; fax: +44 121 414 3389.

E-mail addresses: w.n.everitt@bham.ac.uk (W.N. Everitt), markus@math.umn.edu (L. Markus), muzzulini@math.uni-karlsruhe.de (M. Muzzulini), michael.plum@math.uni-karlsruhe.de (M. Plum).

^{0377-0427/\$ -} see front matter © 2006 Published by Elsevier B.V. doi:10.1016/j.cam.2006.10.039

In this paper we embed both *T*_{Har} and *T*_{Dir} in an infinite family of self-adjoint extensions for an elliptic differential expression, in order to illuminate their inter-relationship within the total family of such self-adjoint extensions. These extensions are determined implicitly in the Stone-von Neumann Hilbert space theory, see [\[11, Chapter IV\],](#page--1-0) or in the corresponding complex symplectic algebra theory of Everitt–Markus, see [\[3\].](#page--1-0) For simplicity of exposition we consider here only the special, but important, case of the elliptic expression for the classical Laplacian Λ , given by

$$
\Delta f := \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2},\tag{1.1}
$$

in the region of the unit disk Ω of the plane \mathbb{E}^2 ,

$$
\Omega = \{(x, y) \in \mathbb{E}^2 : x^2 + y^2 < 1\} \tag{1.2}
$$

in terms of the real rectangular co-ordinates (x, y) . The boundary $\partial\Omega$ of Ω is then the unit circle in E^2 . However, many of the methods and the results apply also to the general case of elliptic partial differential expressions, as considered in [36].

All the linear operators considered here are defined on appropriate domains that are linear sub-manifolds of the Hilbert function space $L_2(\Omega)$, consisting of complex-valued square-integrable functions (or equivalence classes of such functions, in the usual manner) in the region Ω . Here, the notations for the scalar product $\langle \cdot, \cdot \rangle$ and norm $\|\cdot\|$ of $L_2(\Omega)$, and for other spaces, are given in Section 2, or more generally in [\[3, Appendix A, Parts I and II\].](#page--1-0)

In particular, we consider the Sobolev Hilbert spaces in Ω , namely $W^l(\Omega)$ and ⁰ *W*^{*l*}(Ω) for *l* ∈ ℝ, especially for $l \in [0, 2]$ (noting $W^0(\Omega) = L_2(\Omega)$); the definition of these spaces, see [36, Appendix A, Part I, Section 1], requires the introduction of weak or distributional partial derivatives. In addition we require the corresponding boundary Sobolev Hilbert spaces $W^l(\partial\Omega)$ in $\partial\Omega$, also for $l \in [0, 2]$. Likewise we consider the spaces of smooth functions, say $C^{\infty}(\Omega)$, $C^{\infty}(\overline{\Omega})$, $C_0^{\infty}(\Omega)$ —and the corresponding spaces on the smooth compact manifold of the boundary $\partial\Omega$.

We require also certain trace operators which associate with any element $f \in W^2(\Omega)$ the values of $f|_{\partial\Omega}$ and the inward-drawn normal derivative $\partial f/\partial n|_{\partial \Omega}$ on the boundary $\partial \Omega$. As an example, see [\[3, Section 2, \(2.55\), and](#page--1-0) [Appendix A, \(A.35\) and \(A.36\)\],](#page--1-0) the trace operator Tr_1 is a bounded linear surjection defined on $W^2(\Omega)$

$$
\text{Tr}_1: W^2(\Omega) \to W^{3/2}(\partial \Omega) \times W^{1/2}(\partial \Omega) \quad \text{given by } f \to \left\{ f|_{\partial \Omega}, \left. \frac{\partial f}{\partial \mathbf{n}} \right|_{\partial \Omega} \right\},\tag{1.3}
$$

between the indicated Hilbert function spaces. The kernel of Tr_1 is given by

$$
\text{Ker}(\text{Tr}_1) = W^2(\Omega) = \left\{ f \in W^2(\Omega) : f|_{\partial\Omega} = \frac{\partial f}{\partial \mathbf{n}} \bigg|_{\partial\Omega} = 0 \text{ on } \partial\Omega \right\},\tag{1.4}
$$

so $W^2(\Omega)$ is a closed linear subspace of $W^2(\Omega)$.

2. Partial differential operators

The classical Laplacian Δ on the classical domain $C_0^{\infty}(\Omega) \subset L_2(\Omega)$, as in (1.1) and (1.2) above, defines a symmetric linear operator *A*, with a dense domain $D(A) := C_0^{\infty}(\Omega)$ in $L_2(\Omega)$, as follows:

$$
Af := -\Delta f \quad \text{for all } f \in D(A),\tag{2.1}
$$

noting the conventional negative sign. Moreover, the minimal closed symmetric extension T_0 of A , generated by Δ in $L_2(\Omega)$, is given by, see [\[3, Section 3, Theorem 3.2\],](#page--1-0)

$$
D(T_0) := W^2(\Omega) \subset L_2(\Omega) \text{ and } T_0 f := -\Delta f \text{ for all } f \in D(T_0). \tag{2.2}
$$

Here Δ defines a continuous map of $W^2(\Omega)$ into $L_2(\Omega)$ by means of weak or distributional partial derivatives.

Download English Version:

<https://daneshyari.com/en/article/4642584>

Download Persian Version:

<https://daneshyari.com/article/4642584>

[Daneshyari.com](https://daneshyari.com/)