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Computation of dilute two-phase flow in a pump
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Abstract

This paper is a report on a joint project between academia and industry which is concerned with computation of dilute two-phase
flow through a pump in turbulent condition. The flow field for the continuous phase is computed using the Reynolds averaged
Navier–Stokes equations together with mixing length turbulence modeling. The dispersed phase is treated using the Lagrangian
approach by tracking it’s trajectory along which the information is passed. It is found that the bubbles and small solid particles flow
out of the chamber (between the rotating impeller and the casing wall) with the conveying fluid. The solid particles of relatively
bigger sizes accumulate at the low pressure zones near the cashing wall or the rotating shaft.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Flow of bubbles and solid particles is of fundamental importance in many natural, physical and industrial pro-
cesses. In this study we simulate numerically such flow behavior inside a turbomachinery (in particular, inside a
single stage centrifugal pump). During the pumping process multiphase flow (mixture of liquid, solid particles and/or
gas bubbles) may occur through the chamber between the casing wall and the rotating impeller. Due to difference
in densities of the bubbles or solid particles and the conveying fluid that is being pumped, the bubbles or solid
particles move differently in the flow. Normally, the particles move towards the low-pressure zone in the cham-
ber. The performance of the pump goes down with the increase of particles or gas bubbles in the chamber. The
‘mechanical seals’ between rotating shaft and casing wall are wet by some fluid causing the friction to be reduced.
If the bubbles accumulate around it, the seal becomes dry and this leads to it’s destruction. Then the pump fails to
function.

In all the phenomena and processes related to particles/bubbles, there is relative motion between particles on one
hand, and surrounding fluid on the other. In many cases, transfer of mass and/or heat is also of importance. In our
study, by the word ‘particle’ we mean a self-contained body with maximum dimensions about 0.5 �m to 1 cm, sep-
arated from the surrounding medium by a recognizable interface. The material forming the particle will be termed

∗ Corresponding author.
E-mail addresses: hazra@uni-trier.de (S.B. Hazra), steiner@itwm.fhg.de (K. Steiner).

0377-0427/$ - see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.cam.2006.04.011

http://www.elsevier.com/locate/cam
mailto:hazra@uni-trier.de
mailto:steiner@itwm.fhg.de


S.B. Hazra, K. Steiner / Journal of Computational and Applied Mathematics 203 (2007) 444–460 445

as ‘dispersed phase’. We refer to particles whose dispersed phase is composed of solid matters as ‘solid particles’ and
those composed of gas as ‘bubbles’. These particles can be of different shapes and sizes.

Different models used to study such two-phase flows are given in [7,3,5,6] and in references therein. We compute here
dilute liquid–particle flows considering one way coupling. In such flows, the flow of the dispersed phase is controlled
by the surrounding conveying fluid, unlike the dense flows where it is controlled mainly by the particle–particle
collisions. We neglect the effect of other forces except the drag force in this study. We use a Lagrangian description
of the model to simulate numerically the dispersed phase. This model requires specification of the flow field of
the conveying fluid, which is obtained numerically. The particle trajectory is computed by integrating the particle
equations of motion as the particle proceeds through the chamber. For simplicity of description of bubbles in quasi-2D
flow field, we consider the shape of the bubbles to be spherical-cap which is a valid approximation at high Reynolds
number [8].

In the next section we describe the governing equations and initial/boundary conditions of the continuous phase. In
Section 3 we briefly discuss about the mixing-length turbulence model that is used in our study. Section 4 presents the
governing equations of the dispersed phase whose derivation (specially for gas bubbles) is presented in the Appendix
(appears at the end of this paper). Section 5 presents a brief description of method of solution, the results and discussions.
We make our conclusions in Section 6.

2. Governing equations and boundary conditions for the continuous phase

We study the flow between a rotating impeller and a casing wall of a (single stage) centrifugal pump. Such flow
region can be modeled by the geometry between fixed and rotating disks (Fig. 1). The flow field can be described
by the incompressible Navier–Stokes equations [14]. Here temperature variance is neglected and therefore the energy
equation is not solved for temperature. We are interested in the steady-state solution of the continuous phase which
does not depend on time. The dispersed phase is described by Lagrangian formulation, which means the path of the
particles/bubbles is tracked by integrating the evolution equations in time.

Since the flow is turbulent for the Reynolds numbers (defined by Re = r2
max�/�, where � is the angular velocity of

the rotating shaft or the rotating impeller, � = �/� is the kinematic viscosity) in the range used in our computations
(is of the order of 106), we solve the Reynolds averaged Navier–Stokes equations together with Mixing Length
turbulence modeling. Cylindrical polar coordinate system is considered to describe the problem mathematically. In
case of rotational symmetry, �V (r, z, �) = �V (r, z) only, where �V is the velocity vector with components u, w and v

in r (radial), z (axial) and � (tangential) directions, respectively. In that case the Reynolds averaged Navier–Stokes
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Fig. 1. The geometry of the computational domain.
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