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Abstract

We obtain strong and uniform asymptotics in every domain of the complex plane for the scaled polynomials a(3nz), b(3nz), and
c(3nz) where a, b, and c are the type II Hermite–Padé approximants to the exponential function of respective degrees 2n + 2, 2n

and 2n, defined by a(z)e−z − b(z) = O(z3n+2) and a(z)ez − c(z) = O(z3n+2) as z → 0. Our analysis relies on a characterization
of these polynomials in terms of a 3 × 3 matrix Riemann–Hilbert problem which, as a consequence of the famous Mahler relations,
corresponds by a simple transformation to a similar Riemann–Hilbert problem for type I Hermite–Padé approximants. Due to this
relation, the study that was performed in previous work, based on the Deift–Zhou steepest descent method for Riemann–Hilbert
problems, can be reused to establish our present results.
© 2006 Elsevier B.V. All rights reserved.
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1. Hermite–Padé approximation

In this paper we consider quadratic Hermite–Padé approximation to the exponential function. Type I quadratic
Hermite–Padé approximation to the exponential function near 0 consists of finding polynomials pn1,n2,n3 , qn1,n2,n3 and
rn1,n2,n3 of degrees n1, n2 and n3 respectively, such that

pn1,n2,n3(z)e
−z + qn1,n2,n3(z) + rn1,n2,n3(z)e

z = O(zn1+n2+n3+2), z → 0.
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If we set the right-hand side equal to zero and solve for ez, then we obtain the algebraic function

−qn1,n2,n3(z) ±
√

q2
n1,n2,n3

− 4pn1,n2,n3(z)rn1,n2,n3(z)

2rn1,n2,n3(z)

as an approximation to ez. Type II Hermite–Padé approximation is simultaneous rational approximation to e−z and
ez and consists of finding polynomials an1,n2,n3 , bn1,n2,n3 and cn1,n2,n3 of degrees at most n2 + n3 + 2, n1 + n3 and
n1 + n2, respectively, such that

an1,n2,n3(z)e
−z − bn1,n2,n3(z) = O(zn1+n2+n3+2), z → 0,

an1,n2,n3(z)e
z − cn1,n2,n3(z) = O(zn1+n2+n3+2), z → 0.

(1.1)

This gives the rational approximants bn1,n2,n3(z)/an1,n2,n3(z) to e−z and cn1,n2,n3(z)/an1,n2,n3(z) to ez, and both rational
approximants have the same denominator. It is well-known that for the case of exponentials, all indices n1, n2, n3 are
normal, i.e., the polynomials an1,n2,n3 , bn1,n2,n3 and cn1,n2,n3 exist and are unique up to a normalization constant with
degrees exactly n2 + n3 + 2, n1 + n3 and n1 + n2, see [12, Theorem 2.1, p. 129].

Hermite–Padé approximation to the exponential function have been of interest since Hermite and have recently been
investigated in [4,5,8,23,24]. The asymptotic distribution of the zeros for the scaled type I Hermite–Padé polynomials,

Pn(z) = pn,n,n(3nz), Qn(z) = qn,n,n(3nz), Rn(z) = rn,n,n(3nz) (1.2)

and their asymptotic behavior as n → ∞, has recently been studied in detail in [17–20,10], see also [9]. In [10] a
Riemann–Hilbert problem for type I Hermite–Padé approximation was formulated. The asymptotic analysis of this
Riemann–Hilbert problem with the Deift–Zhou [7] steepest descent method for oscillatory Riemann–Hilbert problems
and Stahl’s geometric description of the problem, allowed the authors of [10] to find strong asymptotic formulas for
the polynomials (1.2) as well as for the type I remainder term

En(z) = Pn(z)e
−3nz + Qn(z) + Rn(z)e

3nz (1.3)

that hold uniformly in every region of the complex plane. The paper [10] contained the first instance of a steepest descent
analysis for a 3 × 3 matrix-valued Riemann–Hilbert problem. It was followed by [1,3] which dealt with the asymptotic
analysis of 3×3 matrix-valued Riemann–Hilbert problems arising in random matrix theory.A Riemann–Hilbert analysis
for rational interpolants for the exponential function was carried out in [25].

It is the aim of this paper to show that the Riemann–Hilbert analysis of [10] also produces the corresponding
asymptotic results for the scaled type II Hermite–Padé polynomials

An(z) = an,n,n(3nz), Bn(z) = bn,n,n(3nz), Cn(z) = cn,n,n(3nz), (1.4)

and for the type II remainder terms

E(1)
n (z) = An(z)e

−3nz − Bn(z), E(2)
n (z) = An(z)e

3nz − Cn(z). (1.5)

This is due to the fact that the type II Hermite–Padé polynomials are characterized by a Riemann–Hilbert problem,
which is directly related to the Riemann–Hilbert problem for type I Hermite–Padé polynomials. This relation was first
observed in [22] and also used in [2,6]. See also Section 2. So we follow the asymptotic analysis of [10], and the reader
is advised to consult a copy of that paper too when reading the proofs in this paper.

To illustrate the connection between type I and type II we have depicted in Figs. 1 and 2 the zeros of the type I and
type II Hermite–Padé approximants for the case n1 = n2 = n3 = 60. As it may be apparent from Figs. 1 and 2, scaled
zeros asymptotically accumulate on specific curves in the complex plane, and the same system of curves is relevant for
both type I and type II approximants. More precisely, the subsets of zeros on the left and on the right in Figs. 1 and 2,
once scaled, tend to the same limit curves as the degree tends to infinity. A similar assertion holds true for some of the
zeros of q60,60,60 in the middle of Fig. 1 (those outside of the imaginary axis) and the corresponding subsets of zeros
of b60,60,60 and c60,60,60, respectively, lying in the left and right half-planes.
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