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Abstract

Given a second order differential equation with two singular points, namely the origin and infinity, the connection factors allow
to split a power series solution into formal solutions with known asymptotic behavior. A procedure is suggested to obtain those
factors, as quotients of Wronskians of the mentioned solutions, in the case of a Schrodinger equation with a polynomial potential.
Application of the procedure to particular cases, whose connection factors are already known, allows us to obtain new relations for
quotients and products of gamma functions.
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A considerable number of quantum physical problems consist in solving the Schrodinger differential equation
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with a polynomial “potential” (including centrifugal and energy terms) that, multiplied by z2, has the form

2N
g)=) gz, g #0. )
s=0
Among those problems one can find anharmonic oscillators, non-relativistic quark confinement, spherical stark effect,
molecular models, etc. Besides, the biconfluent and triconfluent Heun equations [14,8], written in normal form, are
particular cases of (1). The condition goxy # 0 imposed to the potential (2) does not restrict the generality of (1) in
view of the possibility of replacing the variable z by its square root.

Solutions of (1) as ascending power series of z can be obtained immediately. Of course, two independent solutions
can be found. In the physical problems mentioned above one is interested only in solutions regular at z = 0, that we
denote by wrey. Although such series are convergent for any finite z, they are numerically useful only for small and
moderate values of |z|. For larger values, asymptotic expansions are more convenient. Olver and Stenger [17] discussed
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such kind of expansions for a class of differential equations including that in (1) as a particular case. Two independent
solutions w1 and wy exist having asymptotic expansions of the form
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with the abbreviation
N
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By requiring the formal expansion in the right-hand side of (3) to satisfy Eq. (1), we obtain (subscripts j omitted)

(@) +22" @) = (@) Y anz ™ +228(@) Y (=m)amz™ " + Y mOm + Dayz " =0. (5)
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The N + 1 constants o, appearing in the right-hand side of (4) can be chosen in such a way that the powers
22N, 22N=1 . zV inthe parenthesis of the first term in (5) disappear. This requirement produces a system of equations

(an)? — gan =0,
2anyon—1 — gan—1 =0,
2anoy—2 + (ay-1)* — gan—2 =0, (6)
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which can be solved successively. There are two sets of solutions, {«, 1} and {e >}, that obviously verify
Op,1 = —0p2, p=0,1,...,N. 7

For each one of those sets of values {a,, ;}, and with an evident notation for the coefficients f§ 5,j> Eq. (5) can be written
in the form
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which implies that the coefficients a,, ; must satisfy the recurrence relation
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which allows one, by starting with an arbitrarily chosen ay, ;, to obtain successively all coefficients a;_ ;.

The solutions to the physical problems mentioned above need to be well behaved (i.e., regular) not only at z = 0,
but also for z — oo. The behavior for large z of the regular (at z = 0) solution, wyeg, can be immediately determined if
one succeeds in writing it as a linear combination of w and w»,

Wreg = T\wy + Thws, (10)

with coefficients 77 and 7> called connection factors. The purpose of this work is to present a procedure to calculate
these factors. Of course, they can be obtained as quotients of Wronskians,

W[wreg’ w2] Y = W[wreg’ wi]
Wlwy, wo] Wlwa, wi]

The computation of the denominators in these expressions is immediate from the formal expansions (3). Bearing in
mind the relations (4) and (7), an expansion in decreasing powers of z is to be expected. But since the Wronskian

I = Y
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