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Abstract

We review the two different approaches for symplecticity of linear multi-step methods (LMSM) by Eirola and Sanz-Serna, Ge
and Feng, and by Feng and Tang, Hairer and Leone, respectively, and give a numerical example between these two approaches. We
prove that in the conjugate relation G��

3 ◦ G�
1 = G�

2 ◦ G��
3 with G�

1 and G�
3 being LMSMs, if G�

2 is symplectic, then the B-series

error expansions of G�
1, G�

2 and G�
3 of the form G�(Z) =∑+∞

i=0 (�i/i!)Z[i] + �s+1A1 + �s+2A2 + �s+3A3 + �s+4A4 + O(�s+5)

are equal to those of trapezoid, mid-point and Euler forward schemes up to a parameter � (completely the same when � = 1),
respectively, this also partially solves a problem due to Hairer. In particular we indicate that the second-order symmetric leap-frog
scheme Z2 = Z0 + 2�J−1∇H(Z1) cannot be conjugate-symplectic via another LMSM.
© 2006 Elsevier B.V. All rights reserved.
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1. First approach for symplectic multi-step methods

It is well-known that for a Hamiltonian system

dZ

dt
= J−1∇H(Z), Z = [z1, . . . , z2n]� ∈ R2n, (1)

where J =[Jij ]= [ On−In

In

On
], ∇ stands for the gradient operator, and H : R2n → R1 is a smooth function (Hamiltonian

function), its phase flow {gt |t ∈ R} is a one-parameter group of symplectic transformations [1]. The symplecticity of
gt : R2n → R2n means[

�gt (Z)

�Z

]�
J

[
�gt (Z)

�Z

]
= J (2)

for any Z ∈ R2n and any t ∈ R.
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It is easy to check that Eq. (2) is equivalent to [6]

(gt )∗� = �, (3)

where � = 1
2

∑2n
a,b=1Jab dza ∧ dzb =∑

1�a<b�2nJab dza ∧ dzb =∑n
c=1 dzc ∧ dzn+c.

More generally, if J becomes K(Z) where K(Z) = (Kab) is an antisymmetric, nondegenerate 2n × 2n matrix
satisfying

�kab

�zc

+ �kbc

�za

+ �kca

�zb

= 0, 1�a, b, c�2n, (4)

then (1) becomes the general Hamiltonian system

dZ

dt
= K−1(Z)∇H(Z), Z = [z1, . . . , z2n]� ∈ R2n, (5)

and the phase flow {ĝt |t ∈ R} of (5) is a one-parameter group of K-symplectic transformations [6,9]:[
�ĝt (Z)

�Z

]T

K(ĝt (Z))

[
�ĝt (Z)

�Z

]
= K(Z). (6)

Furthermore Eq. (6) is equivalent to

(ĝt )∗�̂ = �̂, (7)

where �̂ = 1
2

∑2n
a,b=1Kab dza ∧ dzb =∑

1�a<b�2nKab dza ∧ dzb.
A numerical scheme compatible with (5) is said to be K-symplectic if its step-transition operator G� : R2n → R2n

is a K-symplectic transformation for any stepsize �. In particular, the mid-point rule G�
mp : Z → Z̃ (see [6])

Z1 − Z0 = �J−1∇H

(
Z1 + Z0

2

)
(8)

is a second-order symplectic scheme for the standard Hamiltonian system (1).
The symplecticity of compatible linear m-step method (LMSM) for Hamiltonian system (1)

m∑
k=0

�kZk = �
m∑

k=0

�kJ
−1∇H(Zk),

(
m∑

k=0

�k 
= 0

)
(9)

is first studied under the consideration of transformations in the higher dimensional manifold R2mn.
For the special case m = 2 for example, for the second-order leap-frog scheme

Z2 = Z0 + 2�J−1∇H(Z1), (10)

Ge and Feng [11] rewrote (10) into[
Z2
Z1

]
=
[
Z0 + 2�J−1∇H(Z1)

Z1

]
(11)

and showed that the mapping [Z�
1 , Z�

0 ]� �−→[Z�
2 , Z�

1 ]� preserves the general symplectic structure related to
[

O2n

J2n

J2n

O2n

]
.

More generally, Eirola and Sanz-Serna [5] have shown that if one-leg method (see [13,16] for details)

m∑
k=0

�kZk = �J−1∇H

(
m∑

k=0

�kZk

)
(12)

is symmetric (i.e., �m−k =−�k , �m−k =�k , 0�k�m) and irreducible, then the transformation (Z�
0 , . . . , Z�

m−1)
� −→

(Z�
1 , . . . , Z�

m)� in the higher dimensional manifold R2mn is symplectic with respect to the general structure 	 ⊗ J ,

where 	 is an m × m symmetric matrix defined by the coefficients �k, �k, 0�k�m, it is
[

0
2

2
0

]
for the leap-frog

scheme (10).
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