

JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS

Journal of Computational and Applied Mathematics 206 (2007) 216-228

www.elsevier.com/locate/cam

Scaled generalized Bernstein polynomials and containment regions for the zeros of polynomials

Hansjörg Linden

Fachbereich Mathematik der FernUniversität, Postfach 940, Lützowstr. 125, 58084 Hagen, Germany

Received 6 September 2005; received in revised form 20 June 2006

Abstract

Let $P_n(x) = \sum_{k=0}^n \beta_k b_{k,n}(x; \alpha, \beta)$, $\beta_n \neq 0$, where $b_{k,n}(x; \alpha, \beta) := (\alpha + x)^k (\beta - x)^{n-k}$, $k = 0, 1, \dots, n, \alpha, \beta \in \mathbb{C}$, $\alpha \neq -\beta$, a generalized scaled Bernstein polynomial. Extending a result of Winkler [A resultant matrix for scaled Bernstein polynomials, Linear Algebra Appl. 319 (2000) 179–191] a companion matrix for P_n is given. The application of some matrix methods to this companion matrix yields regions for the zeros of P_n . © 2006 Elsevier B.V. All rights reserved.

MSC: 12D10; 26C10; 30C15

Keywords: Scaled Bernstein polynomials; Zeros of polynomials

1. Introduction

Let

$$P_n(x) := \sum_{k=0}^n \beta_k b_{k,n}(x; \alpha, \beta) := \sum_{k=0}^n a_k x^k, \quad \widehat{P}_n(x) := \sum_{k=0}^n \beta_k x^k,$$
 (1)

where

$$b_{k,n}(x;\alpha,\beta) := (\alpha+x)^k (\beta-x)^{n-k}, \quad k = 0, 1, \dots, n, \quad \alpha, \beta \in \mathbb{C}, \quad \alpha \neq -\beta, \quad \beta_n = 1,$$

be a generalized scaled Bernstein polynomial which also is given in its power (monomial) basis expansion of degree n. The classical scaled Bernstein polynomials we get for $\alpha = 0$, $\beta = 1$.

There are many contributions which concern containment regions for zeros of polynomials, which are given in their power basis expansion (cf. [7–19]). Rather short is the list of contributions which concerns containment regions for zeros of polynomials, which are given in expansions in other basis functions (cf. [1,20–22]). In this paper we consider generalized scaled Bernstein polynomials of type (1). In Section 2 for convenience the connection between the coefficients of a generalized scaled Bernstein polynomial and the coefficients in power basis expansion is given.

E-mail address: hansjoerg.linden@fernuni-hagen.de.

0377-0427/\$ - see front matter © 2006 Elsevier B.V. All rights reserved. doi:10.1016/j.cam.2006.06.013

In Section 3 first we observe that with $\phi(x) := (\beta x - \alpha)/(1+x)$ for an arbitrary companion matrix A of \widehat{P}_n then $\phi(A)$ is a companion matrix of P_n , and for an inclusion region D for the zeros of \widehat{P}_n then $\phi(D)$ is an inclusion region for the zeros of P_n . The most common case of an annulus is considered in Proposition 1. Second, we consider a special companion matrix A of \widehat{P}_n which results from a similarity transformation of the usual Frobenius companion matrix and thus get in $\phi(A)$ a companion matrix for the scaled generalized Bernstein polynomials extending a result of Winkler [23]. A representation of this companion matrix as a sum of a diagonal matrix, a nilpotent matrix, and a matrix of rank 1 makes it possible to compute the traces of $\phi(A)$, $\phi(A)^2$, and $\phi(A)^*\phi(A)$ in terms of the coefficients of the generalized scaled Bernstein polynomial. With this from results of Wolkowicz and Styan [25] we get bounds for the zeros of P_n . Furthermore, in Section 4 with the aid of the numerical range we give a circle in the complex plane which contains the numerical range of the companion matrix $\phi(A)$ and thus the zeros of the given scaled generalized Bernstein polynomial P_n .

2. Scaled generalized Bernstein polynomials

Let $\alpha, \beta \in \mathbb{C}$, $\alpha \neq -\beta$. For $n \in \mathbb{N}$, we consider the generalized basis Bernstein functions

$$b_{k,n}(x;\alpha,\beta) := (\alpha + x)^k (\beta - x)^{n-k}, \quad k = 0, 1, \dots, n.$$
 (2)

The polynomials $b_{k,n}(.; \alpha, \beta)$, k = 0, 1, ..., n, are linearly independent—that is, they are a basis of the vector space of all polynomials of degree at most n.

Let

$$P_n(x) := \sum_{k=0}^n a_k x^k \tag{3}$$

be a polynomial of degree n. Because of the basis property of the generalized Bernstein functions P_n can be expressed according to

$$P_n(x) := \sum_{k=0}^n \beta_k b_{k,n}(x; \alpha, \beta). \tag{4}$$

Then we have

$$\beta_k = \sum_{\nu=0}^k \sum_{\mu=\nu}^n \binom{n-\nu}{k-\nu} a_{\mu} \binom{\mu}{\nu} (\alpha+\beta)^{\nu-n} (-1)^{\mu-\nu} \alpha^{\mu-\nu}, \quad k = 0, 1, \dots, n,$$

and

$$a_k = \sum_{\nu=0}^n \beta_{\nu} \sum_{\mu=0}^k (-1)^{\mu} \binom{\nu}{k-\mu} \binom{n-\nu}{\mu} \alpha^{\nu-k+\mu} \beta^{n-\nu-\mu}, \quad k = 0, 1, \dots, n.$$

If $\alpha = 0$, then

$$\beta_k = \sum_{v=n-k}^{n} {v \choose n-k} a_{n-v} \beta^{-v}, \quad k = 0, 1, \dots, n,$$

and

$$a_k = \sum_{\nu=0}^n \beta_{\nu} (-1)^{k-\nu} \binom{n-\nu}{k-\nu} \beta^{n-k}, \quad k = 0, 1, \dots, n,$$

and if in addition $\beta = 1$, then

$$\beta_k = \sum_{v=n-k}^{n} {v \choose n-k} a_{n-v}, \quad k = 0, 1, \dots, n,$$

Download English Version:

https://daneshyari.com/en/article/4642816

Download Persian Version:

https://daneshyari.com/article/4642816

<u>Daneshyari.com</u>