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Abstract

In this paper we propose the R-K type Landweber iteration and investigate the convergence of the method for nonlinear ill-posed
problem F(x) =y where F : H — H is a nonlinear operator between Hilbert space H. Moreover, for perturbed data with noise
level 0 we prove that the convergence rate is 0(52/ 3) under appropriate conditions. Finally, the numerical performance of this R-K
type Landweber iteration for a nonlinear convolution equation is compared with the Landweber iteration.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Let us consider a nonlinear operator equation
Fx)=y, F:H—>H (1.1)

in a real Hilbert space H (Eq. (1.1) in a complex Hilbert space can be treated similarly), where F is a nonlinear operator
with domain H with corresponding inner products (-, -) and norms || - ||, respectively. Throughout this paper we assume
that y° € H are the available approximate data with

ly — yII<6, (12)

where 0 denotes the noise level, that (1.1) has a solution x* (which need not be unique) and F possesses a locally
uniformly bounded Fréchet-derivative F'(-) in a ball B, (xo) of radius r around xo € H.

In the theory of ill-posed problems many methods for nonlinear ill-posed problems are known. One of the best
understood regularization theory for nonlinear ill-posed inverse problems is the method of Tikhonov regularization
[5,2]. In contrast to Tikhonov regularization, iteration methods [6,4] produce an approximation to the solution within
every iteration step. Several iteration methods for nonlinear operators were under investigation during the last years.
In the paper of Hanke et al. [4] the well known Landweber iteration for linear ill-posed problems [3] has been extended
to the nonlinear case.
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There have some achievements to the study of the dynamical system up to now. Airapetyan and Ramm [1] have
posed a general approach to continuous analogs of discrete methods and established fairly general convergence theorems
aiming at the following dynamical system:

x(t) = P(x(1), 1),  x(0) = xo, (1.3)

where @ is a nonlinear operator, @ : H x [0, +00) — H.Meanwhile, they constructed the discrete schemes generated
by this continuous process:

Xk4+1 = Xk + o, ty), k=0,1,2,.... (1.4)

In 2003, Ramm [7] proved the global convergence for ill-posed equations with monotone operators.
In [9], Tautenhahn studied the continuous Landweber method:

X(0) =—=F' (x@) [Fx@®)—yl, x(0)=x€ H. (1.5)

Here xo € H is some element. (In this case the noise level 6 =0.)
When the noise level 6 # 0, aregularized approximation x9(T) of x* is obtained by solving the initial value problem:

x0@) = F'(x°0)* [y’ — F&x°t)], 0<t<T, x°(0) = xo, (1.6)

where T plays the role of the regularization parameter. If we use Euler’s method with a step size r = 1 to discrete (1.6),
we can obtain the usual Landweber iteration:

X =x = FO) F(x) — 1.

Tautenhahn uses the following assumption to study the convergence of continuous Landweber method:
(A1) In a Ball B, (xg) of radius r around xg there holds:

IF(X) = F(x) = FF ()& = 0) <l Fx) = FOI, n<l
for all x, x € B,(xo) C H. This assumption guarantees that for all x, X € B,(x¢) there holds
1 , . . 1 , .
—IF )& =OI<IFx) = FOI<——I1F (x)(x = X)|. (1.7)
147 11—

Proposition 1 in [9] shows that the discrepancy || F (x%(T)) — y5|| as a function of 7 is monotone non-increasing.
Furthermore, it shows that the error ||x5(T) — x*|| as a function of T is strong monotonically decreasing as far as
| F (xé(T)) — y‘3 || >4 holds with T = (1 4 77)/(1 — n). Hence, it makes sense to choose the regularization parameter
in (1.5) from a discrepancy principle, i.e., T = T* is a solution of the nonlinear equation

h(T) = | F(x*(T)) — y°|l — 26 =0, (1.8)
witht> (1 +n)/(1 —n).
We also know that under some conditions Eq. (1.8) has a unique solution 7* < oo from Proposition 2 in [2].

In the following two theorems Tautenhahn proved convergence properties of method (1.6) when noise level 6 = 0
and ¢ # 0, respectively.

Theorem 1.1 (Tautenhahn [9]). Let (1.2) and (A1) be satisfied. If (1.1) is solvable in B, (xq), then
x(T) = x* forT — o0 (1.9)

(convergence for exact data), where x* € B, (xo) is a solution of (1.1). Let x* denote the unique solution of minimal
distance to xo, then, if in addition N(F'(x") c N (F'(x)) for all x € B,(xq), then x(T) converges to x".

In this paper, N(-) denotes the null space of an operator.
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