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Abstract

In this paper we propose the R-K type Landweber iteration and investigate the convergence of the method for nonlinear ill-posed
problem F(x) = y where F : H → H is a nonlinear operator between Hilbert space H. Moreover, for perturbed data with noise
level � we prove that the convergence rate is O(�2/3) under appropriate conditions. Finally, the numerical performance of this R-K
type Landweber iteration for a nonlinear convolution equation is compared with the Landweber iteration.
© 2006 Elsevier B.V. All rights reserved.

MSC: 32H50; 34K29

Keywords: Ill-posed problems; R-K type Landweber method; Continuous methods

1. Introduction

Let us consider a nonlinear operator equation

F(x) = y, F : H → H (1.1)

in a real Hilbert space H (Eq. (1.1) in a complex Hilbert space can be treated similarly), where F is a nonlinear operator
with domain H with corresponding inner products (·, ·) and norms ‖ · ‖, respectively. Throughout this paper we assume
that y� ∈ H are the available approximate data with

‖y − y�‖��, (1.2)

where � denotes the noise level, that (1.1) has a solution x∗ (which need not be unique) and F possesses a locally
uniformly bounded Fréchet-derivative F ′(·) in a ball Br(x0) of radius r around x0 ∈ H .

In the theory of ill-posed problems many methods for nonlinear ill-posed problems are known. One of the best
understood regularization theory for nonlinear ill-posed inverse problems is the method of Tikhonov regularization
[5,2]. In contrast to Tikhonov regularization, iteration methods [6,4] produce an approximation to the solution within
every iteration step. Several iteration methods for nonlinear operators were under investigation during the last years.
In the paper of Hanke et al. [4] the well known Landweber iteration for linear ill-posed problems [3] has been extended
to the nonlinear case.
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There have some achievements to the study of the dynamical system up to now. Airapetyan and Ramm [1] have
posed a general approach to continuous analogs of discrete methods and established fairly general convergence theorems
aiming at the following dynamical system:

ẋ(t) = �(x(t), t), x(0) = x0, (1.3)

where � is a nonlinear operator, � : H ×[0, +∞) → H . Meanwhile, they constructed the discrete schemes generated
by this continuous process:

xk+1 = xk + ��(xk, tk), k = 0, 1, 2, . . . . (1.4)

In 2003, Ramm [7] proved the global convergence for ill-posed equations with monotone operators.
In [9], Tautenhahn studied the continuous Landweber method:

ẋ(t) = −F ′(x(t))∗[F(x(t)) − y], x(0) = x0 ∈ H . (1.5)

Here x0 ∈ H is some element. (In this case the noise level � = 0.)
When the noise level � �= 0, a regularized approximation x�(T ) of x∗ is obtained by solving the initial value problem:

x�(t) := F ′(x�(t))∗[y� − F(x�(t))], 0 < t �T , x�(0) = x0, (1.6)

where T plays the role of the regularization parameter. If we use Euler’s method with a step size r = 1 to discrete (1.6),
we can obtain the usual Landweber iteration:

x�
k+1 = x�

k − F ′(x�
k )∗[F(x�

k ) − y�].
Tautenhahn uses the following assumption to study the convergence of continuous Landweber method:
(A1) In a Ball Br(x0) of radius r around x0 there holds:

‖F(x̃) − F(x) − F ′(x)(x̃ − x)‖��‖F(x) − F(x̃)‖, � < 1

for all x, x̃ ∈ Br(x0) ⊂ H . This assumption guarantees that for all x, x̃ ∈ Br(x0) there holds

1

1 + �
‖F ′(x)(x − x̃)‖�‖F(x) − F(x̃)‖� 1

1 − �
‖F ′(x)(x − x̃)‖. (1.7)

Proposition 1 in [9] shows that the discrepancy ‖F(x�(T )) − y�‖ as a function of T is monotone non-increasing.
Furthermore, it shows that the error ‖x�(T ) − x∗‖ as a function of T is strong monotonically decreasing as far as
‖F(x�(T )) − y�‖��� holds with � = (1 + �)/(1 − �). Hence, it makes sense to choose the regularization parameter
in (1.5) from a discrepancy principle, i.e., T = T ∗ is a solution of the nonlinear equation

h(T ) = ‖F(x�(T )) − y�‖ − �� = 0, (1.8)

with � > (1 + �)/(1 − �).
We also know that under some conditions Eq. (1.8) has a unique solution T ∗ < ∞ from Proposition 2 in [2].
In the following two theorems Tautenhahn proved convergence properties of method (1.6) when noise level � = 0

and � �= 0, respectively.

Theorem 1.1 (Tautenhahn [9]). Let (1.2) and (A1) be satisfied. If (1.1) is solvable in Br(x0), then

x(T ) → x∗ for T → ∞ (1.9)

(convergence for exact data), where x∗ ∈ Br(x0) is a solution of (1.1). Let x† denote the unique solution of minimal
distance to x0, then, if in addition N(F ′(x†)) ⊂ N(F ′(x)) for all x ∈ Br(x0), then x(T ) converges to x†.

In this paper, N(·) denotes the null space of an operator.
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