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Abstract

This paper develops an efficient particle tracking algorithm to be used in fluid simulations approximated by a high-order multido-
main discretization of the Navier—Stokes equations. We discuss how to locate a particle’s host subdomain, how to interpolate the
flow field to its location, and how to integrate its motion in time. A search algorithm for the nearest subdomain and quadrature point,
tuned to a typical quadrilateral isoparametric spectral subdomain, takes advantage of the inverse of the linear blending equation.
We show that to compute particle-laden flows, a sixth-order Lagrangian polynomial that uses points solely within a subdomain is
sufficiently accurate to interpolate the carrier phase variables to the particle position. Time integration of particles with a lower-order
Adams-Bashforth scheme, rather than the fourth-order Runge—Kutta scheme often used for the integration of the carrier phase,
increases computational efficiency while maintaining engineering accuracy. We verify the tracking algorithm with numerical tests
on a steady channel flow and an unsteady backward-facing step flow.
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1. Introduction

The tracking of particles along their path in time (Lagrangian formulation) in a continuous field (Eulerian formulation)
finds application in several areas of fluid dynamics, such as flow visualization and multi-phase flows. In the so-called
mixed Eulerian-Lagrangian formulation, the continuous field, typically called the carrier phase, is solved through
constitutive equations on a fixed mesh. Particles are tracked individually.

The tracking algorithm consists of three stages per particle: the search for the computational cell in which a particle is
located, the interpolation of the carrier phase variables to the particle location, and finally, pushing the particle forward
with a time integration method. The particles are assumed not to affect the carrier phase. The numerical method and
the type of mesh used to solve the carrier phase determines the algorithm needed for each stage of the tracking.
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The first stage, locating the host cell, is most simply performed on a Cartesian mesh: the host cell of the particle
may be found by a comparison of the particle coordinate to the mesh coordinate. In complex geometries, searching
is more involved, so several methods have been proposed for this in the past. The localization scheme of Seldner and
Westermann [17] lays a fine equidistant mesh over a boundary-fitted grid. The particle is then localized in the Cartesian
mesh. A relationship between the equidistant mesh and the boundary-fitted grid is used to obtain the addresses of the
particles with respect to the grid. In Westermann [18], the location of the particle with respect to a cell is found by
comparing the area of the triangles that subdivide the original element to the area of the original element. For curvilinear
elements, Allievi and Bernejo [1] devised an iterative method to invert the bijective method that determines the particle
coordinate in mapped space. Comparing the mapped particle coordinate to the isoparametric map of the element readily
determines the host cell. Patankar and Karki [15] advance the particle in mapped space rather than in physical space.
This eliminates the need for a search algorithm, at the additional cost of the interpolation of the metric terms to the
particle position.

To compute the field variables at the particle location, linear interpolation is usually used when the carrier phase
is computed with a low-order method. For higher-order methods, such as spectral methods, linear interpolation is
inaccurate but interpolation on the order of the scheme is computationally expensive. Yeung and Pope [19] showed that
linear interpolation is inaccurate. They suggested a third-order Taylor expansion interpolation scheme or a cubic spline
scheme. In a comparison of several interpolation schemes, Balachandar and Maxey [2] concluded that the choice of the
interpolation scheme depends on the physical problem at hand. If one is only interested in individual particle dispersion
statistics, it is sufficient to settle for a less accurate but computationally faster scheme such as a low-order Lagrange
interpolant. For experiments such as the simulation of particle coagulation, where close interaction of particles plays
a crucial role, the choice of the interpolation scheme is determined more by the need for accuracy. Kontomaris et al.
[11] concluded that a Lagrange polynomial of order six suffices to extract particle dispersion statistics in simulations
of a turbulent channel flow computed with a Fourier—Chebyshev spectral method.

The time integration stage in the mixed Eulerian—-Lagrangian methods has been less studied. In general, the time
schemes for the Eulerian and Lagrangian integrations are chosen to be the same [14]. Kontomaris et al. [11], however,
note that in the computation of turbulent flow the time-step size on the Eulerian method is too stringent for the
Lagrangian method. A larger time step for the Lagrangian tracking is shown to give sufficiently accurate single-particle
statistics.

In this paper, we tailor the three particle tracking stages to multidomain spectral methods. Although we will focus on
the staggered-grid Chebyshev method developed in Kopriva [12], the findings are generally applicable to high-order
spectral methods such as discontinuous Galerkin methods or spectral /p element methods. To the best of the authors’
knowledge, no studies exist on tracking algorithms for this type of numerical methodology.

Our study is part of a larger work [7-9] in which the multidomain staggered-grid spectral method is developed to
simulate turbulent multi-phase compressible flows. Thus, we focus in this paper on tracking particles that move under
the influence of a Stokes drag force in a compressible fluid. We will concentrate on flow situations such as turbulent
flows that have a large range of scales.

Spectral multidomain methods distinguish themselves from other numerical methods, like finite volume, finite
element or finite difference methods, by combining high accuracy (exponential convergence) with an ease to handle
complex geometries through the use of multiple non-overlapping isoparametric subdomains. As a result, we cannot use
tracking algorithms that are developed for other methods. Most notably, the high-order interpolation, intrinsic to the
method weighs heavily on the computational time. We concentrate on minimizing this time, and compare various less
expensive interpolation schemes to the expensive spectral interpolation. We also look at interpolation schemes with no
overlap between subdomains. These would be effective for a parallel version of the code. In our choice for the search
algorithm, the high computational cost of interpolation eliminates the mapping method of Patankar and Karki [15],
since that requires interpolation of the metric terms (four in 2D and nine in 3D).

We will introduce a search algorithm for straight-sided subdomains that is competitive with the method in Westermann
[18]. Our method takes advantage of the inverse of the isoparametric linear blending formula. In addition, we discuss
the advantages of using a second-order Adams—Bashforth (AB) time scheme to track the particles in place of the
fourth-order Runge—Kutta (RK) scheme that is used to integrate the carrier phase in time. We also discuss how some
physical dependencies influence the accuracy of the time integration scheme.

This paper is organized as follows. The governing equations and a short introduction to the multidomain staggered-
grid spectral method set the stage. Next, the search algorithm is presented. An investigation into interpolation schemes
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