
Journal of Computational and Applied Mathematics 206 (2007) 432–439
www.elsevier.com/locate/cam

Lattice Boltzmann model for two-dimensional unsteady
Burgers’ equation�

YaLi Duan∗, RuXun Liu
Department of Mathematics, University of Science and Technology of China, Hefei, Anhui 230026, PR China

Received 9 April 2006; received in revised form 28 July 2006

Abstract

In this paper, a special lattice Boltzmann model is proposed to simulate two-dimensional unsteady Burgers’ equation. The
maximum principle and the stability are proved. The model has been verified by several test examples. Excellent agreement is
obtained between numerical predictions and exact solutions. The cases of steep oblique shock waves are solved and compared with
the two-point compact scheme results. The study indicates that lattice Boltzmann model is highly stable and efficient even for the
problems with severe gradients.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In recent years, the lattice Boltzmann method (LBM) has been developed into an alternative and promising numerical
scheme for simulating fluid flows [1,8,3] and solving various mathematical–physical problems [7,4,10–12]. This method
can be either regarded as an extension of the lattice gas automaton [6] or as a special discrete form of the Boltzmann
equation for kinetic theory [5]. Unlike conventional numerical schemes based on discretizations of partial differential
equations describing macroscopic conservation laws, the LBM is based on solving the discrete-velocity Boltzmann
equation from statistical physics. It describes the microscopic picture of particles movement in an extremely simplified
way, while on the macroscopic level it gives a correct average description.

The Burgers’ equation, which is also called the nonlinear advection–diffusion equation, is a simplified model of
Navier–Stokes equations. It retains the nonlinear aspects of the governing equation in many practical transport prob-
lems such as aggregation interface growth, the formation of large-scale structures in the adhesion model for cosmology,
turbulence transport, shock wave theory, wave processes in thermoelastic medium, transport and dispersion of pollutants
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in rivers and sediment transport. Therefore, it is usually used to test different numerical methods. The unsteady two-
dimensional Burgers’ equation in one unknown variable take the following form:
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with the initial condition u(x, y, 0) = u0(x, y). Here the viscous coefficient � = 1/Re > 0, Re is the Reynolds number.
For a small value of �, Burgers’ equation behaves merely as hyperbolic partial differential equation and the problem
becomes very difficult to solve as a steep shock-like wave fronts developed.

Elton [4] and Shen et al. [11] have proposed lattice Boltzmann models for 2D Burgers’equation in which there is only
one convective term. In the paper, we developed a 4-bit model for Eq. (1). By using Taylor expansion and multi-scale
analysis, the time-dependent two-dimensional Burgers’ equation is recovered from the lattice Boltzmann equation,
and the local equilibrium distribution functions are obtained. It is generally recognized that the LBM is a Lagrangian
discretization of a discrete-velocity Boltzmann equation. In this view, we find such lattice Boltzmann scheme satisfies
maximum principle, therefore, we complete the proof of stability.

The rest of the paper is organized as follows. Section 2 proposes a lattice Boltzmann model and derives the 2D
Burgers’ equation from the model. A stability analysis of the LBM is also given in Section 3. In Section 4 some
numerical experiments are made using our model. And the conclusions are given in the end.

2. Lattice Boltzmann method

According to the theory of the LBM, it consists of two steps: (1) streaming, where each particle moves to the nearest
node in the direction of its velocity; and (2) colliding, which occurs when particles arriving at a node interact and
possibly charge their velocity directions according to scattering rules. Usually, with the single-relaxation-time BGK
approximation [2], these two steps can be combined into the following LBE:
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where f� is the distribution function of particles; f
eq
� is the local equilibrium distribution function of particles; �x

and �t are space and time increments, respectively; c = �x/�t is “the speed of light” in the system; e� is the velocity
vector of a particle in the � link and � is the dimensionless single-relaxation-time which controls the rate of approach
to equilibrium. Virtually it is a full discretization of time, space, and velocity. The macroscopic velocity, u is defined
in terms of the distribution functions as
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The lattice Boltzmann schemes are established on the square grids with four perpendicular directions:

e1 = (c, 0), e2 = (0, c), e3 = (−c, 0), e4 = (0, −c).

This is a 4-bit model shown in Fig. 1. To derive the macroscopic equation from the lattice BGK model, we employ
the Taylor expansion and multi-scale analysis. The distribution functions are expanded up to linear terms in the small
expansion parameter �
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From the kinetic equation (2), we expand the distribution function f�(x + �te�, t + �t) in its Taylor expansion and
calculate an approximation of f
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