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Abstract

We present a new implementation of the two-grid method for computing extremum eigenpairs of self-adjoint partial differential
operators with periodic boundary conditions. A novel two-grid centered difference method is proposed for the numerical solutions
of the nonlinear Schrödinger–Poisson (SP) eigenvalue problem.We solve the Poisson equation to obtain the nonlinear potential
for the nonlinear Schrödinger eigenvalue problem, and use the block Lanczos method to compute the first k eigenpairs of the
Schrödinger eigenvalue problem until they converge on the coarse grid. Then we perform a few conjugate gradient iterations to solve
each symmetric positive definite linear system for the approximate eigenvector on the fine grid. The Rayleigh quotient iteration is
exploited to improve the accuracy of the eigenpairs on the fine grid. Our numerical results show how the first few eigenpairs of the
Schrödinger eigenvalue problem are affected by the dopant in the Schrödinger–Poisson (SP) system. Moreover, the convergence
rate of eigenvalue computations on the fine grid is O(h3).
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In recent years, some numerical methods have been proposed for computing the first few eigenpairs of the Schrödinger
eigenvalue problem. See e.g., [8,18,19]. In particular, the homotopy continuation method [19] was exploited to solve the
Schrödinger eigenvalue problem with Dirichlet boundary conditions, where various linear potentials were numerically
tested. However, in the case of Dirichlet boundary conditions most of the multiple eigenvalues are double. Livne and
Brandt [18] design linear-complexity multiscale algorithms for computing, storing, and manipulating eigenfunctions
of the 1D periodic Schrödinger eigenvalue problem and other related differential operators. Recent research articles
concerning the computations of interior eigenpairs of the Schrödinger equation can be found in [14,27].

Xu and Zhou [28] developed a two-grid finite element discretization scheme for second order linear elliptic eigenvalue
problems. Let h̃ and h be the uniform meshsizes on the coarse and the fine grids, and (u, �) and (uh, �h) be the
corresponding exact and the approximate eigenpairs on the fine grid, respectively. They show that ‖∇(u − uh)‖L2=
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O(h + h̃2) and |� − �h| = O(h2 + h̃4). These estimates mean that one can obtain asymptotic optimal errors by taking

h̃ = O(h
1
2 ). Recently the authors [5] developed a two-grid finite element discretization scheme for semilinear elliptic

eigenvalue problems.
In this paper we modify the two-grid finite element scheme in [5], and propose a new implementation of the two-

grid method for computing extremum eigenpairs of self-adjoint partial differential operators with periodic boundary
conditions. The problem can be expressed as

F(u, �) = 0, (1)

where F : B × R → B is a smooth mapping with u ∈ B, � ∈ R, B is some Banach space, and R is the real line. For
the Schrödinger eigenvalue problem

L(�, �) = −�� + Ṽ � − �� = 0, (2)

where (�, �) = (0, �) is a trivial solution, where Ṽ is the linear potential. Therefore, we can treat an eigenpair of
the operator equation as a solution curve branching from the trivial solution curve at the eigenvalue [26, Chapter 9, p.
572]. We will combine the ideas of the two-grid discretization scheme together with the predictor–corrector method
and develop a new algorithm for computing the extremum eigenpairs of the discrete Schrödinger eigenvalue problem.

To start, we discretize the operator equation (1) on the coarse grid by the centered difference approximations. Then
we use the block Lanczos method to compute extremum eigenpairs on the coarse grid, which also can handle multiple
and clustered eigenpairs as well. The implementations are inexpensive since the order of the coefficient matrix on the
coarse grid is relatively small compared to the one on the fine grid. An alternative is to use the function eig in MATLAB

to compute the first few eigenpairs. The extremum eigenpairs we obtained on the coarse grid will be used as predicted
points to compute their counterparts on the fine grid. To obtain the target eigenpairs on the fine grid, we consider the
first order approximation of the operator equation. Instead of solving symmetric positive definite (SPD) linear systems
with multiple-right-hand sides for the eigenvectors, we propose to use the conjugate gradient (CG) method [11, Chapter
10] to solve each SPD linear system using a few iterations. The approximate eigenvalues on the fine grid are obtained
by computing the corresponding Rayleigh quotients. Our main concern here is that the fine grid solutions only serve as
starting initial guesses for the Rayleigh quotient iteration (RQI). Therefore, it is unnecessary to compute eigenvectors
on the fine grid to the desired accuracy for solving linear systems. Our numerical experience shows that performing
one CG iteration for each linear system would suffice to supply an acceptable initial guess for the RQI. We emphasize
here that it is the RQI which give us accurate solutions in the two-grid method.

Three issues remain to be addressed concerning the two-grid method described above. First, how many extremal
eigenpairs on the coarse grid can be used as initial guesses for computing their counterparts on the fine grid? Next, do
multiple and clustered eigenvalues on the coarse grid suffice to approximate their counterparts on the fine grid? That is,
the multiplicity of eigenvalues between these two grids must be consistent. Finally, we must choose a proper number
of eigenvalues to compute so that the multiplicity of eigenvalues is never missed. The answers to these questions are
based on some basic analysis as well as the numerical performance of the two-grid method on the linear eigenvalue
problem

�u + �u = 0 in � = (0, 1)n,

with periodic boundary conditions, and n = 2, 3.
Next, to study how the first few eigenpairs of the linear Schrödinger eigenvalue problem will be affected by a dopant,

we consider the Schrödinger–Poisson (SP) system. We apply the two-grid method described above, and develop a two-
grid method for computing numerical solutions of the SP system [15]. The system describes a quantum mechanical
model of extremely small devices in semiconductor nanostructures where the quantum structure has to be taken into
account. We also use the block Lanczos method to compute the first few, say k eigenpairs on the coarse grid. Then we
consider the nonlinear Schrödinger eigenvalue problem as a parameter-dependent problem

L(�, �) + �N(�) = 0, � ∈ [0, 1], (3)

where N(�) = V � denotes the effect of the nonlinear potential V. We choose an initial step size �0 with j�0 = 1,
j ∈ N, for the continuation method, and solve the Poisson equation to obtain V for (3). Then we go back to (3)
and use the block Lanczos method to find the first k eigenpairs. This process is repeated until j�0 = 1 is reached.
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