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Abstract

In this paper, we consider the permanence of a modified delayed SIR epidemic model with density dependent birth rate which is
proposed in [M. Song, W. Ma, Asymptotic properties of a revised SIR epidemic model with density dependent birth rate and time
delay, Dynamic of Continuous, Discrete and Impulsive Systems, 13 (2006) 199–208]. It is shown that global dynamic property of the
modified delayed SIR epidemic model is very similar as that of the model in [W. Ma, Y. Takeuchi, T. Hara, E. Beretta, Permanence
of an SIR epidemic model with distributed time delays, Tohoku Math. J. 54 (2002) 581–591; W. Ma, M. Song, Y. Takeuchi, Global
stability of an SIR epidemic model with time delay, Appl. Math. Lett. 17 (2004) 1141–1145].
© 2006 Published by Elsevier B.V.
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1. Introduction

Epidemic models with or without time delay are studied by many authors (see, for example, for the model with
time delay [1,2,11–13,15], for one without time delay [7,9,10,14]). They consider the stability or permanence of the
models by applying the theory on delay differential equations [3–6,8]. In this paper, we consider the permanence of
the following modified delayed SIR epidemic model with density dependent birth rate which is proposed in [13],⎧⎪⎪⎪⎨

⎪⎪⎪⎩

Ṡ(t) = −�S(t)I (t − h) − �1S(t) + b

(
1 − �1

N(t)

1 + N(t)

)
,

İ (t) = �S(t)I (t − h) − �2I (t) − �I (t),

Ṙ(t) = �I (t) − �3R(t),

(1.1)

where S(t)+I (t)+R(t) ≡ N(t) denotes the number of a population at time t; S(t), I (t) and R(t) denote the numbers of
susceptible members to the disease, of infective members and of members who have been removed from the possibility
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of infection through full immunity, respectively. It is assumed that all newborns are susceptible. The positive constants
�1, �2 and �3 represent the death rates of susceptibles, infectives and recovered, respectively. It is natural biologically to
assume that �1 � min{�2, �3}. The positive constants b and � represent the birth rate of the population and the recovery
rate of infectives, respectively. The constant �1 (0��1 < 1) reflects the relation between the birth rate and the density
of population. The nonnegative constant h is the time delay.

The initial condition of (1.1) is given as

S(�) = �1(�), I (�) = �2(�), R(�) = �3(�) (−h���0), (1.2)

where �=(�1, �2, �3)
T ∈ C, such that �i (�)�0 (−h���0, i=1, 2, 3). C denotes the Banach space C([−h, 0],R3)

of continuous functions mapping the interval [−h, 0] intoR3. By a biological meaning, we further assume that �i (0) > 0
for i = 1, 2, 3. It is easily to show that the solution (S(t), I (t), R(t)) of (1.1) with the initial condition (1.2) exists for
all t �0 and is unique and positive for all t �0.

With some simple computation, we see that (1.1) always has a disease free equilibrium (i.e., boundary equilibrium)
E0 = (S0, 0, 0), where

S0 = 1

2�1

[
b(1 − �1) − �1 +

√
[b(1 − �1) − �1]2 + 4�1b

]
.

Furthermore, if

S0 > S∗ ≡ �2 + �

�
, (1.3)

then (1.1) also has an endemic equilibrium (i.e., interior equilibrium) E+ = (S∗, I ∗, R∗), where

I ∗ = −P +
√

P 2 − 4�S∗WQ

2�S∗W
, R∗ = �I ∗

�3
,

W = 1 + �

�3
> 0,

P = [�1S
∗ − b(1 − �1)]W + �S∗(1 + S∗),

Q = [�1S
∗ − b(1 − �1)](1 + S∗) − b�1 < 0.

A detailed analysis on the local asymptotic stability of E0 and E+, and the global asymptotic stability of E0 are
given in [13]. The purpose of the paper is to consider the permanence of (1.1) with the initial condition (1.2).

2. Permanence of (1.1)

In this section, we always assume that S0 > S∗ which ensures the existence of the endemic equilibrium E+ of (1.1).
The following lemma is proved in [13].

Lemma 2.1. For any solution (S(t), I (t), R(t)) of (1.1) with (1.2), we have that

lim sup
t→+∞

N(t)�S0. (2.1)

We also have the following

Lemma 2.2. For any solution (S(t), I (t), R(t)) of (1.1) with (1.2), it has that

lim inf
t→+∞ S(t)� b(1 − �1)

�S0 + �1
≡ �1. (2.2)
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