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Abstract

If an open interval I contains a k-fold root � of a real polynomial f, then, after transforming I to (0, ∞), Descartes’ Rule of Signs
counts exactly k roots of f in I, provided I is such that Descartes’ Rule counts no roots of the kth derivative of f. We give a simple
proof using the Bernstein basis.

The above condition on I holds if its width does not exceed the minimum distance � from � to any complex root of the kth
derivative. We relate � to the minimum distance s from � to any other complex root of f using Szegő’s composition theorem. For
integer polynomials, log(1/�) obeys the same asymptotic worst-case bound as log(1/s).
© 2006 Published by Elsevier B.V.
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1. Introduction

Let f (x) =∑n
i=0 fix

i be a polynomial of degree n with real coefficients. Descartes’ Rule of Signs states that the
number v = var(f0, . . . , fn) of sign variations in the coefficient sequence of f exceeds the number p of positive real
roots, counted with multiplicities, by an even non-negative integer. See [7, Theorem 2] for a proof with careful historic
references. Jacobi [5, IV] made the “little observation” that this statement on the interval (0, ∞) can be extended to
any open interval (l, r) by first composing f with the Möbius transform T (x) = (lx + r)/(x + 1) that takes (0, ∞) to
(l, r) and then inspecting the coefficients of g(x) = (x + 1)nf (T (x)). We call this the Descartes test for the number
of roots of f in (l, r). As this test counts roots with multiplicities, it cannot distinguish, say, two simple roots from one
double root. However, if multiplicities are known in advance, the Descartes test remains useful even in the presence of
multiple roots.

Consider the Bernstein basis Bn
0 , Bn

1 , . . . , Bn
n defined by

Bn
i (x) = Bn

i [l, r](x) =
(

n

i

)
(x − l)i(r − x)n−i

(r − l)n
. (1)
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The coefficients of f (x) = ∑n
i=0 biB

n
i (x) in the Bernstein basis and the coefficients of g(x) = ∑n

i=0 gix
i in the

monomial basis agree up to order and positive constants; that is, gi = (
n
i
)bn−i for 0� i�n. Hence the Descartes test

for f on (l, r) can equivalently be formulated to count the number of sign variations in the sequence (b0, . . . , bn) of
Bernstein coefficients. This relation was already known to Pólya and Schoenberg [11, p. 322; 14, Section 1]. It was
first applied in a root isolation algorithm by Lane and Riesenfeld [8].

Descartes’ Rule of Signs has an immediate geometric interpretation in terms of Bézier curves [4,12]. The graph of
f is a Bézier curve with control points (bi )

n
i=0 where bi = (i/n, bi). The Descartes test counts how many times the

control polygon b0b1 ∪ b1b2 ∪ · · · ∪ bn−1bn crosses the x-axis. Repeated de Casteljau subdivision is a corner-cutting
process on the control polygon, which, in the limit, converges to the graph of f. The number of intersections with the
x-axis can never grow and only drop by an even number during corner-cutting.

Let the open interval I contain a simple root � of f. If the Descartes test counts v = 1 in I, this implies that � is
the unique root of f in I. However, the converse implication does not hold in general. The use of the Descartes test
in algorithms for isolating the real roots of square-free polynomials [2,6,13,9] has motivated research on conditions
sufficient for the Descartes test to count v = 1. A particularly general sufficient condition was given by Ostrowski [10]
but has been overlooked until recently [7].

We remark that not every test for roots in an interval I has this property of yielding the exact count if the width of I is
small enough. The closely related Budan–Fourier test for roots in (l, r] computes v′ := var(f (l), f ′(l), . . . , f (n)(l))−
var(f (r), f ′(r), . . . , f (n)(r)), which is also known to exceed the number of roots in (l, r], counted with multiplicities,
by a non-negative even integer [1, Theorem 2.36]. But consider the example f (x) = x3 + x: Substitution into the
sequence (f (x), . . . , f ′′′(x)) yields the sign patterns (−, +, −, +) for x < 0 and (+, +, +, +) for x > 0. Hence v′ = 3
for any interval (l, r] containing the simple root 0 in its interior.

Our results: Let the open interval I contain a k-fold root � of f whose multiplicity k�1 is known. We present sufficient
conditions for the Descartes test to count v = k sign variations for f in I and thus to certify uniqueness of the root � in I.
Using the Bernstein basis, we can prove very easily in Section 2 that the Descartes test counts v = k for f whenever it
counts v(k) = 0 for the kth derivative f (k). This condition is met if the width of I does not exceed the minimum distance
� between � and any root of f (k). In Section 3, we relate � to the minimum distance s between � and any other complex
root of f. To do so, we use Szegő’s composition theorem in a way that generalizes an approach of Dimitrov [3] from
the first to higher derivatives of f, and we obtain a lower bound on the distance of � to roots of f (r) for any r �k. For
integer polynomials with �-bit coefficients, the resulting bound on log(1/�) has the same worst-case asymptotics as
log(1/s), namely O(n� + n log n).

2. A partial converse via differentiation

From now on, we assume w.l.o.g. [l, r] = [0, 1]. Differentiation of the ith Bernstein basis polynomial Bn
i (x) =

(
n
i
)xi(1 − x)n−i yields nBn−1

i−1 (x) − nBn−1
i (x), where Bn−1

−1 = Bn−1
n = 0 by convention. Hence the derivative of

f (x)=∑n
i=0 biB

n
i (x) is f ′(x)=∑n

i=0 n(bi+1 −bi)B
n−1
i (x). The coefficient vector (ci)

n−1
i=0 of 1/n ·f ′(x) is therefore

given by the following difference scheme.

b0 b1 b2 · · · bn−1 bn

c0 = −b0 + b1 c1 = −b1 + b2 · · · cn−1 = −bn−1 + bn (2)

The following lemma can be regarded as a piecewise linear analogue of Rolle’s Theorem.

Lemma 1. The numbers of sign variations in (2) satisfy var(c0, . . . , cn−1)�var(b0, . . . , bn) − 1.

Proof. Each sign variation in (b0, . . . , bn) is an index pair 0� i < j �n such that bibj < 0 and bi+1 = · · · = bj−1 = 0.
Let there be exactly v such pairs (i1, j1), . . . , (iv, jv) with indices i1 < j1 � i2 < j2 � · · · � iv < jv . Sign variations are
either “positive to negative” (bi > 0) or “negative to positive” (bi < 0). Obviously, these types alternate. If bi� > 0, then
bi�+1 �0 and thus ci� =−bi� +bi�+1 < 0. Similarly, if bi� < 0 then ci� > 0. Hence the sequence (c0, . . . , cn−1) contains
an alternating subsequence sgn(ci1) �= sgn(ci2) �= · · · �= sgn(civ ), demonstrating that (c0, . . . , cn−1) has at least v − 1
sign variations. �
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