
Journal of Computational and Applied Mathematics 200 (2007) 276–282
www.elsevier.com/locate/cam

A note on the bounds of the error
of Gauss–Turán-type quadratures�
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Abstract

This note is concerned with estimates for the remainder term of the Gauss–Turán quadrature formula,

Rn,s(f ) =
∫ 1

−1
w(t)f (t) dt −

n∑
�=1

2s∑
i=0

Ai,�f
(i)(��),

where w(t) = (Un−1(t)/n)2
√

1 − t2 is the Gori–Michelli weight function, with Un−1(t) denoting the (n − 1)th degree Chebyshev
polynomial of the second kind, and f is a function analytic in the interior of and continuous on the boundary of an ellipse with
foci at the points ±1 and sum of semiaxes � > 1. The present paper generalizes the results in [G.V. Milovanović, M.M. Spalević,
Bounds of the error of Gauss–Turán-type quadratures, J. Comput. Appl. Math. 178 (2005) 333–346], which is concerned with the
same problem when s = 1.
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1. Introduction

Let w be an integrable weight function on the interval (−1, 1). We consider the error term Rn,s(f ) of the Gauss–Turán
quadrature formula with multiple nodes

∫ 1

−1
w(t)f (t) dt =

n∑
�=1

2s∑
i=0

Ai,�f
(i)(��) + Rn,s(f ),
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which is exact for all algebraic polynomials of degree at most 2(s + 1)n − 1, and whose nodes are the zeros of
the corresponding s-orthogonal polynomial �n,s(t) of degree n. For more details on Gauss–Turán quadratures and
s-orthogonal polynomials see the book [1] and the survey paper [4].

Let � be a simple closed curve in the complex plane surrounding the interval [−1, 1] and D be its interior. If the
integrand f is an analytic function in D and continuous on D, then we take as our starting point the well-known
expression of the remainder term Rn,s(f ) in the form of the contour integral

Rn,s(f ) = 1

2�i

∮
�
Kn,s(z)f (z) dz. (1.1)

The kernel is given by

Kn,s(z) = �n,s(z)

[�n,s(z)]2s+1 , z /∈ [−1, 1], (1.2)

where

�n,s(z) =
∫ 1

−1

[�n,s(t)]2s+1

z − t
w(t) dt, n ∈ N, (1.3)

and �n,s(t) is the corresponding s-orthogonal polynomial with respect to the weight function w(t) on (−1, 1).
The integral representation (1.1) leads to a general error estimate, by using Hölder inequality,

|Rn,s(f )| = 1

2�

∣∣∣∣
∮

�
Kn,s(z)f (z) dz

∣∣∣∣ � 1

2�

(∮
�
|Kn,s(z)|r |dz|

)1/r(∮
�
|f (z)|r ′ |dz|

)1/r ′

,

i.e.,

|Rn,s(f )|� 1

2�
‖Kn,s‖r‖f ‖r ′ , (1.4)

where 1�r � + ∞, 1/r + 1/r ′ = 1, and

‖f ‖r :=
{(∮

�|f (z)|r |dz|)1/r
, 1�r < + ∞,

max
z∈�

|f (z)|, r = +∞.

The case r = +∞ (r ′ = 1) gives

|Rn,s(f )|� �(�)

2�

(
max
z∈�

|Kn,s(z)|
)(

max
z∈�

|f (z)|
)

, (1.5)

where �(�) is the length of the contour �. On the other side, for r = 1 (r ′ = +∞), the estimate (1.4) reduces to

|Rn,s(f )|� 1

2�

(∮
�
|Kn,s(z)||dz|

)(
max
z∈�

|f (z)|
)

, (1.6)

which is evidently stronger than the previous, because of inequality∮
�
|Kn,s(z)||dz|��(�)

(
max
z∈�

|Kn,s(z)|
)

.

Also, the case r = r ′ = 2 could be of certain interest.
For getting the estimate (1.5) or (1.6) it is necessary to study the magnitude of |Kn,s(z)| on � or the quantity

Ln,s(�) := 1

2�

∮
�
|Kn,s(z)| |dz|,

respectively (see, e.g., [5,6]).
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