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Abstract

The continuous Galerkin finite element method for linear delay-differential equation with several terms is studied. Adding some
lower terms in the remainder of orthogonal expansion in an element so that the remainder satisfies more orthogonal condition in the
element, and obtain a desired superclose function to finite element solution, thus the superconvergence of p-degree finite element
approximate solution on (p + 1)-order Lobatto points is derived.
© 2005 Elsevier B.V. All rights reserved.

MSC: 65M60

Keywords: Delay-differential equation with several terms; Continuous Galerkin finite element method; New element orthogonal expansion;
Superconvergence

1. Introduction

Delay-differential equations (DDEs) are a large and important class of dynamical systems. There are different kinds
of delay-differential equations. They often arise in either natural or technological control problems. The investigations
recorded in most of references were concentrated on Runge–Kutta method or some multi-step methods [7,8,10]. In this
paper we will study the continuous Galerkin finite element method for a class of linear delay-differential equation

u′(t) = a(t)u(t) +
m∑

l=1

bl(t)u(t − �l ), t �0, (1)

u(t) = �(t), t �0, (2)

where the quantities �l are positive constants such that 0 < �1 < �2 < · · · < �m < + ∞. We assume that the coefficients
a(t), bl(t) are sufficiently smooth complex-valued functions such that Re(a) < 0,

∑m
l=1 |bl | < − Re(a). So for the

Eqs. (1) and (2) there is a unique complex-valued solution u ∈ H 1([0, +∞)) [11].
In 1989, Aziz and Monk solved the heat equation with continuous finite element method [1]. A kind of supercon-

vergence O(h2p+2) at the node points between time intervals was shown in [1] as well as in [6]. The basics of the cG
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methods as well as some references are also given in the textbook by Eriksson et al. [5]. In 2000, Chen proposed a new
idea on superconvergence research in finite elements [3]. Later Chen put the idea into structure theory of superconver-
gence of finite elements [4]. The idea is to add some lower degree terms in the remainder of orthogonal expansion in an
element so that the remainder satisfies more conditions in the element, and get a desired superclose function uI to finite
element solution uh. In 2001, by use of this new idea Pan and Chen derived several new superconvergence results for
the initial value problem of ordinary differential equation [9]. Based on above search we shall study superconvergence
of continuous Galerkin finite element for the delay-differential Eqs. (1) and (2) with several terms.

For our element orthogonal analysis, we introduce Legendre’s polynomials [4] in interval E = [−1, 1]

l0 = 1, l1 = s, l2 = 1

2
(3s2 − 1), l3 = 1

2
(5s3 − 3s), . . . , ln = 1

2nn!
dn

dsn
(s2 − 1)n, . . . , (3)

where the inner product (li , lj ) = 0 if i �= j , otherwise (li , lj ) = 2/(2j + 1), l(±1) = (±1)j . ln(s) has n distinct roots
(n order Gauss points) in (−1, 1). Integrating ln, we get another family of polynomials [4]

M0 = 1, M1 = s, M2 = 1

2
(s2 − 1), M3 = 1

2
(s3 − s), . . . , Mn+1 = 1

2nn!
dn−1

dsn−1 (s2 − 1)n, . . . , (4)

which has the following quasiorthogonal property: (Mi, Mj ) �= 0 if i−j=0 or=±2, otherwise (Mi, Mj )=0. Obviously,
Mj(±1) = 0 for j �2. Mn+1(s) has n + 1 distinct roots ((n + 1) order Lobatto points: −1 = z1 < z2 < · · · < zn+1 = 1
in E. Here and below, denote Sobolev space and its norm by Wk,p(·) and ‖u‖k,p,·, respectively. If p = 2, simply use
Hk(·) and ‖u‖k .

In this paper we shall assume that the exact solution u is sufficient smooth for our purpose.
For T > �m, the interval J =[0, T ] is partitioned uniformly into N elements. Let h=T/2N ��1 denote half step-size

of this partition and Jn = [tn−1, tn] an element where tn = 2nh. Denote element midpoint by tn−1/2 = (tn−1 + tn)/2
and this partition by

Jh = {Jn|n = 1, 2, . . . , N}.
Define p-degree finite element space to be

Sh = {v ∈ C(J ), v|Jn ∈ Pp, n = 1, 2, . . . , N, },
where Pp(Jn) denotes the space of all polynomials of degree �p in Jn. Finally denote set of (n + 1)-order Lobatto
points in all elements in partition Jh by

Z0 = {tj i = tj−1/2 + hj zi, j = 1, 2, . . . , N, i = 1, 2, . . . , n + 1}.
For the sake of argument, let �0 = 0, �m+1 = +∞, b0(t) = a(t), bm+1(t) = 0, then Eq. (1) can be rewritten as

u′(t) =
m+1∑
l=0

bl(t)u(t − �l ), t �0. (5)

For some integer �, 0���m, �� � t < ��+1, in terms of initial condition (2), (5) yields

u′(t) −
�∑

l=0

bl(t)u(t − �l ) =
m+1∑

l=�+1

bl(t)�(t − �l ). (6)

Multiplying by v(t) ∈ L2(Jn) = {v| ∫
Jn

|v|2 dt < ∞} and integrating over the element Jn, we get

∫
Jn

[
u′(t) −

�∑
l=0

bl(t)u(t − �l )

]
v(t) dt =

∫
Jn

⎡
⎣ m+1∑

l=�+1

bl(t)�(t − �l )

⎤
⎦ v(t) dt, ∀v(t) ∈ L2(Jn). (7)



Download English Version:

https://daneshyari.com/en/article/4643038

Download Persian Version:

https://daneshyari.com/article/4643038

Daneshyari.com

https://daneshyari.com/en/article/4643038
https://daneshyari.com/article/4643038
https://daneshyari.com

