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Abstract

We give a survey on interval linear systems discussing problems for regular systems as well as for singular ones. We consider
several solution sets and direct methods to enclose them. Moreover we study iterative methods, particularly the total step method as
the basis for other ones. We also use this method for enclosing solutions of singular linear systems.
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1. Introduction

In this paper we consider the set of linear systems of equations Ax = b where A is a matrix which varies in a given
real n×n interval matrix [A] and where b is any vector contained in a given real interval vector [b] with n components.
This set is usually called ‘interval linear system of equations’ or shortly ‘interval linear system’. It is denoted by

[A]x = [b] (1.1)

which is misleading in some sense since one normally does not look for a real vector x∗ or an interval vector [x]∗
such that (1.1) holds for x = x∗ or x = [x]∗ algebraically using interval arithmetic. Nevertheless we will keep up the
traditional formal notation (1.1) throughout the paper. One of the true problems in connection with (1.1) consists in
enclosing (possibly tightly) the solution set

� = �∃∃ = {x | (∃A ∈ [A])(∃b ∈ [b])(Ax = b)} (1.2)

by an interval vector [x]∗. This is usually called ‘verification of the solutions x ∈ �’ provided that [A] is regular, i.e., it
does not contain a singular matrix. A vector [x]∗ ⊇ � is sometimes called a ‘solution of (1.1)’. For singular matrices
[A], i.e., matrices which contain at least one singular matrix A as element this terminology has to be modified since
a compact interval vector can never contain a non-trivial affine subspace which occurs in consistent singular linear
systems Ax =b. We discuss this problem in Section 5 where we also report on the convergence of the total step method
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if the spectral radius �(|[A]|) of the absolute value |[A]| ∈ Rn×n of [A] no longer satisfies the usual convergence
criterion �(|[A]|) < 1. In this way we generalize the set of admissible regular interval matrices [A] for this method.
Moreover, we allow systems with singular matrices A at the boundary of [A]. In Section 2 we report on possible origins
of interval linear systems and on particular subsets of � from (1.2), in Section 3 we mention direct interval methods for
enclosing a solution [x]∗ of (1.1) presenting a new unpublished necessary and sufficient criterion for the feasibility of
the interval Gaussian algorithm (cf. Theorem 3.1c). Section 4 is devoted to iterative methods with emphasis on the total
step method for interval data. We illustrate the central role of this simple method by deriving connections to methods
in relevant interval software. Nearly all of our results are not yet contained in textbooks like [1, 30]. It was our aim to
give a survey on them without being exhaustive. Due to page limit we had to omit such important topics as complexity,
sparsity and subspace methods. Moreover, our citations had to be very restrictive. They should be understood as starting
point but by no means as a complete list of references in this area.

By IR, IRn, IRn×n we denote the set of intervals, the set of interval vectors with n components and the set of n × n

interval matrices, respectively. By ‘interval’we mean here a real compact interval.As already indicated we write interval
quantities in brackets with the exception of point quantities (i.e., degenerate interval quantities) which we identify with
the element which they contain. Examples are the identity matrix I and the vector e=(1, 1, . . . , 1)T. We use the notation
[A] = [A, A] = ([a]ij ) = ([aij , aij ]) ∈ IRn×n simultaneously without further reference, and we proceed similarly for
the elements of Rn, Rn×n, IR and IRn. For an interval [a] we introduce the midpoint ǎ = (a + a)/2, the absolute value
|[a]|= max{|a|, |a|}, the radius rad([a])= (a − a)/2 and the interior int([a])= (a, a). For interval vectors and interval
matrices these quantities are defined entrywise, for instance |[A]| = (|[a]ij |) ∈ Rn×n. For their properties and for the
interval arithmetic on which most of our results are based we refer to the introductory chapters of the textbooks which
we just mentioned—see also the pioneering work of [40].

As usual we call a vector x ∈ Rn non-negative if xi �0 for i = 1, . . . , n, writing x�0 in this case. By x > 0 we
denote a vector whose entries all are positive. For matrices we apply this definition analogously. If A ∈ Rn×n only
has non-positive off-diagonal entries and if it has a non-negative inverse then A is called an M matrix. An interval
matrix [A] ∈ IRn×n is called an M matrix if each A ∈ [A] has this property. It is an H matrix if its comparison matrix
〈[A]〉= (cij ) ∈ Rn×n is an M matrix where the entries of a comparison matrix are defined by cij = min {|a| | a ∈ [a]ij }
if i = j and cij = −|[a]ij | if i �= j .

2. Solution sets

There are several mechanisms which may lead to interval linear systems. Common to all is the aim to enclose the
input data of one or several point linear systems Ax = b. The need for this action can occur during a computational
process or is already immanent in the underlying mathematical problem by virtue of inexact input data. Examples for
the first category are conversion errors like the conversion from decimal to binary system, and rounding errors when
computing for instance the entries of A and b. Thus the decimal number 0.1 cannot be represented with finitely many
digits as a binary number but is a periodic dual fraction. Therefore input data which are exactly represented in the
decimal floating point system may fail to be represented exactly as binary floating point numbers. If one wants to
compute with the exact input data nevertheless one has to compute with machine representable bounds for these input
data. This directly leads to interval linear systems. Analogously one obtains such systems when dealing with rounding
errors. Two examples for the second category are non-linear systems of equations with Newton’s method hidden behind
and Leontief’s static open input–output model. We will shortly describe the situation in both cases.

Example 2.1. Look for a zero x∗ of a given continuously differentiable function f = (fi) : x ∈ Rn → Rn and assume
that you are given an approximation x̃ for x∗. Assume that [x] ∈ IRn is known such that x̃, x∗ ∈ [x]. Using Taylor
expansion one obtains

0 = f (x∗) = f (x̃) +
∫ 1

0
f ′(x̃ + t (x∗ − x̃)) dt · (x∗ − x̃)

= f (x̃) + (grad fi(�i ))
T · (x∗ − x̃) ∈ f (x̃) + f ′([x])([x] − x̃),
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