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Abstract

In this paper we consider the linear complementarity problem where the components of the input data M and q are not exactly
known but can be enclosed in intervals. We compare three tests to each other each of which can be used by a computer that supports
interval arithmetic to give guaranteed bounds for a solution of the LCP defined by M and q.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Given M ∈ Rn×n and q ∈ Rn the linear complementarity problem (LCP) is to find two vectors w, z such that

w − Mz = q, w�o, z�o, wTz = 0, (1)

or to show that no such vectors exist. Obviously, (1) is equivalent to

q + Mz�o, z�o, (q + Mz)Tz = 0 (2)

via w := q +Mz. The inequalities in (1), (2), and in the sequel are meant componentwise and o denotes the zero vector.
The LCP models many important mathematical problems and there exist several algorithms for calculating numerical
solutions of the LCP (see [4,5,9,12]). In [3,2], validation methods were presented that prove (by the use of a computer)
guaranteed bounds on the distance between a numerical solution and an exact solution of the LCP. In the present paper
we want to extend these ideas to the case that (due to representation errors, for instance) the components of M and q
are not exactly known, but can be enclosed in intervals.

Example 1.1. In [14], the LCP arises with

M =
(

WTA−1(W + NG) IT

NH − I O

)
, q =

(
WTA−1h + b

o

)
, (3)

where A is assumed to be regular. Since, in general, WTA−1(W + NG) and WTA−1h are not representable by floating
point numbers, any algorithm applied on a computer without taking care of roundoff errors will, in general, not consider
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the original LCP defined by (3). However, a programming language that supports interval arithmetic will give us an
interval matrix [M] and an interval vector [q] satisfying M ∈ [M] and q ∈ [q].

Recall that we consider compact intervals [a, a] := {x ∈ R : a�x�a} and denote the set of all such intervals by
IR. We also write [a] instead of [a, a]. Furthermore, we consider matrices with intervals as elements; i.e., ([aij ]) =
([aij , aij ]). We also write [A, A] := {A ∈ Rn×n : A�A�A}. By IRn×n we denote the set of all these so-called

interval matrices. We also write [A] instead of [A, A]. The set of interval vectors with n components is constructed in
the same way and is denoted by IRn. For an introduction to interval computations we refer to [1].

In the present paper we consider the case that there are given an interval matrix [M] ∈ IRn×n and an interval vector
[q] ∈ IRn, and we consider the LCP (1) and (2), respectively, with M ∈ [M] and q ∈ [q]. In Section 2, we present an
algorithm that calculates vectors [w], [z] ∈ IRn attacking

∀M ∈ [M], ∀q ∈ [q]∃w∗ ∈ [w], z∗ ∈ [z] such that w∗, z∗ fulfill (1). (4)

In Section 3, on the other hand, we consider computational tests on a given interval vector [z] ∈ IRn (sometimes also
called test box) attacking

∀M ∈ [M], ∀q ∈ [q]∃z∗ ∈ [z] such that z∗fulfills (2). (5)

Finally, in Section 4, we will present some numerical examples.

2. The Lemke algorithm

Considering the LCP one has to mention the Lemke algorithm, “which remains the most versatile algorithm for
solving this fundamental problem in the field of mathematical programming” [6]. Therefore, we have implemented an
interval arithmetic version of the Lemke algorithm [16] in the same manner as the Gaussian algorithm was extended to
the interval Gaussian algorithm [1]. If it terminates with two interval vectors [w, w], [z, z] ∈ IRn satisfying w�o and
z�o, then [w] and [z] fulfill (4), see Theorem 4.1 in [16]. However, there arise problems when solutions are degenerate,
see Example 2.1.

Example 2.1. We have considered Example 1.1 with n = 24 and randomly chosen A, W, I, NH , NG, h, and b. The
interval Lemke algorithm implemented in PASCAL-XSC [8] gave [w] = o and

[z] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[−4.6E − 011, 4.6E − 011]
...

[−4.6E − 011, 4.6E − 011]
[9.7977195916E − 001, 9.7977195921E − 001]
[1.9595439183E + 000, 1.9595439185E + 000]
[2.9393158775E + 000, 2.9393158776E + 000]
[3.9190878366E + 000, 3.9190878368E + 000]
[4.8988597958E + 000, 4.8988597960E + 000]
[5.8786317550E + 000, 5.8786317552E + 000]
[6.8584037142E + 000, 6.8584037144E + 000]
[7.8381756734E + 000, 7.8381756736E + 000]

[8.81794763259E + 000, 8.81794763271E + 000]
[9.79771959177E + 000, 9.79771959189E + 000]
[1.07774915509E + 001, 1.07774915511E + 001]
[1.17572635101E + 001, 1.17572635103E + 001]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ IR24.
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