

Available online at www.sciencedirect.com

JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS

Journal of Computational and Applied Mathematics 197 (2006) 406–420

www.elsevier.com/locate/cam

Artificial boundary conditions for parabolic Volterra integro-differential equations on unbounded two-dimensional domains

Houde Han^a, Liang Zhu^a, Hermann Brunner^{b,*}, Jingtang Ma^c

a Department of Mathematics Sciences, Tsinghua University, Beijing 100084, PR China
 b Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John's, NL, Canada A1C 5S7
 c Institute of Computational Mathematics and Scientific/Engineering Computing, Academy of Mathematics and System Sciences, Chinese Academy of Sciences, Beijing 100080, PR China

Received 29 June 2004

Abstract

In this paper we study the numerical solution of parabolic Volterra integro-differential equations on certain unbounded twodimensional spatial domains. The method is based on the introduction of a feasible artificial boundary and the derivation of corresponding artificial (fully transparent) boundary conditions. Two examples illustrate the application and numerical performance of the method.

© 2005 Elsevier B.V. All rights reserved.

MSC: 65R20; 65M20

Keywords: Partial Volterra integro-differential equation; Unbounded spatial domain; Artificial boundary conditions; Numerical solution

1. Introduction

Let $\Omega \subseteq \mathbb{R}^2$ be a semi-infinite strip domain with boundary $\Gamma = \Gamma_i \cup \Gamma_U \cup \Gamma_L$ (as shown in Fig. 1). Γ_U and Γ_L are assumed to be parallel.

Consider the following initial-boundary-value problem for a parabolic equation with memory term

$$\frac{\partial u}{\partial t} + \int_0^t k(x, t - \tau) u(x, \tau) \, d\tau = \nabla(\alpha(x) \nabla u) - \beta(x) u + f(x, t), \quad (x, t) \in \Omega \times (0, T], \tag{1.1}$$

$$u = g(x, t), \quad (x, t) \in \Gamma \times (0, T), \tag{1.2}$$

$$u(x,0) = u_0(x) \quad x \in \Omega, \tag{1.3}$$

$$u(x,t) \to 0$$
 as $x_1 \to +\infty$. (1.4)

^{*} Corresponding author.

E-mail addresses: hhan@math.tsinghua.edu.cn (H. Han), zhul99@mails.tsinghua.edu.cn (L. Zhu), hermann@math.mun.ca (H. Brunner), jingtang@lsec.cc.ac.cn (J. Ma).

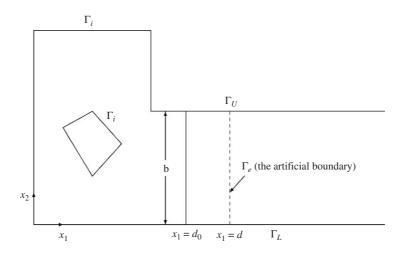


Fig. 1. Unbounded domain Ω and artificial boundary Γ_e .

We assume that:

(i) $\alpha(x) - 1 \geqslant 0$, $\beta(x) - \beta_0 \geqslant 0$ (β_0 is a non-negative constant), and $u_0(x)$ has compact support; Supp $\{\alpha(x) - 1\} \subset \bar{\Omega}_0 := \{x | x \in \bar{\Omega} \text{ and } x_1 \leqslant d_0\},$

$$\operatorname{Supp}\{\beta(x) - \beta_0\} \subset \bar{\Omega}_0,$$

 $\operatorname{Supp}\{u_0(x)\}\subset \bar{\Omega}_0.$

- (ii) f(x,t) and g(x,t) have compact support: Supp $\{f\} \subset \bar{\Omega}_0 \times [0,T]$ and Supp $\{g\} \subset \bar{\Omega}_0 \times [0,T]$.
- (iii) $k(x, t) \equiv k_0(t)$ for $x_1 \geqslant d_0$.

In order to solve this problem numerically we introduce an artificial boundary $\Gamma_e \times [0, T]$ defined by

$$\Gamma_e := \{ x = (x_1, x_2) \in \Omega : x_1 = d, \ 0 \le x_2 \le b, \ d \ge d_0 \}.$$

This artificial boundary divides the domain $\bar{\Omega} \times [0, T]$ into two parts, the *bounded* part $\bar{\Omega}_i \times [0, T]$ and the *unbounded* part $\Omega_e \times [0, T]$

$$\Omega_i = \{x | x \in \Omega \text{ and } x_1 < d\}, \quad \Omega_e = \Omega \setminus \overline{\Omega}_i.$$

Our aim is to present a feasible and computationally effective numerical scheme for the approximate solution of the problem (1.1)–(1.4) on the bounded domain $\bar{\Omega}_i \times [0, T]$. This hinges on the derivation of a suitable artificial boundary condition on the given artificial boundary $\Gamma_e \times [0, T]$.

The artificial boundary method was introduced and analyzed for elliptic problems in [6,7]; see also [8,3]. In [4,5], these artificial boundary techniques were extended to the heat equation and related parabolic PDEs, and their approach was subsequently generalized [9] to one-dimensional "non-local" parabolic equations containing a memory term given by a (regular or weakly singular) Volterra integral operator.

The purpose of the present paper is to describe the computational form of the artificial boundary method for parabolic Volterra integro-differential equations of the form (1.1) on unbounded two-dimensional spatial domains given essentially by a semi-infinite strip, and to illustrate its numerical performance. It will be seen in Sections 2 and 3 that passing from one to two (or more) spatial dimensions is not trivial (compare also [7,8,4]).

The content of the paper is as follows. In Section 2 we derive the corresponding transparent artificial boundary condition on $\Gamma_e \times [0, T]$, significantly extending the approach in [9]. The reduction of the original problem (1.1)–(1.4) to the bounded domain $\Omega_i \times [0, T]$ is presented in Section 3. Here, we also state and prove a first result dealing with the

Download English Version:

https://daneshyari.com/en/article/4643096

Download Persian Version:

https://daneshyari.com/article/4643096

Daneshyari.com