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Abstract

In this paper we study the numerical solution of parabolic Volterra integro-differential equations on certain unbounded two-
dimensional spatial domains. The method is based on the introduction of a feasible artificial boundary and the derivation of corre-
sponding artificial (fully transparent) boundary conditions. Two examples illustrate the application and numerical performance of
the method.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Let � ⊆ R2 be a semi-infinite strip domain with boundary � = �i ∪ �U ∪ �L (as shown in Fig. 1). �U and �L are
assumed to be parallel.

Consider the following initial-boundary-value problem for a parabolic equation with memory term

�u

�t
+
∫ t

0
k(x, t − �)u(x, �) d� = ∇(�(x)∇u) − �(x)u + f (x, t), (x, t) ∈ � × (0, T ], (1.1)

u = g(x, t), (x, t) ∈ � × (0, T ], (1.2)

u(x, 0) = u0(x) x ∈ �, (1.3)

u(x, t) → 0 as x1 → +∞. (1.4)
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Fig. 1. Unbounded domain � and artificial boundary �e .

We assume that:

(i) �(x) − 1�0, �(x) − �0 �0 (�0 is a non-negative constant), and u0(x) has compact support;
Supp{�(x) − 1} ⊂ �̄0 := {x|x ∈ �̄ and x1 �d0},

Supp{�(x) − �0} ⊂ �̄0,

Supp{u0(x)} ⊂ �̄0.
(ii) f (x, t) and g(x, t) have compact support:

Supp{f } ⊂ �̄0 × [0, T ] and Supp{g} ⊂ �̄0 × [0, T ].
(iii) k(x, t) ≡ k0(t) for x1 �d0.

In order to solve this problem numerically we introduce an artificial boundary �e × [0, T ] defined by

�e := {x = (x1, x2) ∈ � : x1 = d, 0�x2 �b, d �d0}.
This artificial boundary divides the domain �̄ × [0, T ] into two parts, the bounded part �̄i × [0, T ] and the unbounded
part �e × [0, T ]

�i = {x|x ∈ � and x1 < d}, �e = �\�i .

Our aim is to present a feasible and computationally effective numerical scheme for the approximate solution of the
problem (1.1)–(1.4) on the bounded domain �̄i × [0, T ]. This hinges on the derivation of a suitable artificial boundary
condition on the given artificial boundary �e × [0, T ].

The artificial boundary method was introduced and analyzed for elliptic problems in [6,7]; see also [8,3]. In [4,5],
these artificial boundary techniques were extended to the heat equation and related parabolic PDEs, and their approach
was subsequently generalized [9] to one-dimensional “non-local” parabolic equations containing a memory term given
by a (regular or weakly singular) Volterra integral operator.

The purpose of the present paper is to describe the computational form of the artificial boundary method for parabolic
Volterra integro-differential equations of the form (1.1) on unbounded two-dimensional spatial domains given essentially
by a semi-infinite strip, and to illustrate its numerical performance. It will be seen in Sections 2 and 3 that passing from
one to two (or more) spatial dimensions is not trivial (compare also [7,8,4]).

The content of the paper is as follows. In Section 2 we derive the corresponding transparent artificial boundary
condition on �e ×[0, T ], significantly extending the approach in [9]. The reduction of the original problem (1.1)–(1.4)
to the bounded domain �i ×[0, T ] is presented in Section 3. Here, we also state and prove a first result dealing with the
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