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A new asymptotic series for the Gamma function�
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Abstract

The famous Stirling’s formula says that �(s+1)=√
2�s(s/e)se�(s) =√

2�(s/e)se�(s)/12s . In this paper, we obtain
a novel convergent asymptotic series of �(s) and proved that �(s) is increasing for s > 0.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The Gamma function, one of the most famous functions in both mathematics and applied sciences,

s! = �(s + 1) =
∫ ∞

0
xse−x dx, s > 0 (1)

can be analytically expanded to the whole complex plane excluding non-positive integers.
It is well-known that the Gamma function has the following famous Stirling asymptotic series
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(see [1, p. 167, 6, pp. 111–112])

ln(s − 1)! = 1

2
ln 2� +

(
s − 1

2

)
ln s − s +

∞∑
n=1

(−1)n−1 Bn

2n(2n − 1)s2n−1
, (2)

where Bm are Bernoulli numbers. However, series (2) is not convergent (see [1, p. 167]). In addition,
Lanczos obtained an efficient method for numerical calculation of the Gamma function (see [2]). In this
paper we obtained the following novel convergent asymptotic series.

Theorem 1. Let v�0 be a real number and s be a complex number such that Re(s)�1, where Re(s)
denotes the real part of s. Then, we obtained

ln s! = 1
2 ln 2� + (s + 1

2 ) ln s − s + �(s), (3)

where

�(s) =
∞∑

k=1

ak(v)

(s + v)(s + v + 1) · · · (s + v + k − 1)
,

ak(v) = 1

2k

∫ 1

0
(1 − 2t)(v − t)(v + 1 − t) · · · (v + k − 1 − t) dt .

Set v = 1 in (3), we obtain the Binet’s formula (see [7, p. 253])

ln(s − 1)! = 1

2
ln 2� +

(
s − 1

2

)
ln s − s +

∞∑
k=1

ak(1)

(s + 1)(s + 2) · · · (s + k)
. (4)

Furthermore, we generalize equality (3) to all complex numbers s excluding negative integers.

Corollary 1. For all complex numbers s but not negative integer, let m� − [Re(s)] be a non-negative
integer, where [x] is defined to be the greatest integer not exceeding x. Then, we have

ln s! = 1

2
ln 2� +

(
s + m + 1

2

)
ln(s + m + 1) −

m∑
p=1

ln(s + p)

− s − m − 1 + �(s + m + 1). (5)

For the polynomials ak(v)′s introduced in Theorem 1, there holds the following results.

Theorem 2. For any v�0, a1(v) = 1
12 , and a2(v) = v/12. If v�v0 ≈ 0.146094, the positive root of

240v3 + 600v2 + 270v − 53 = 0, then ak(v) > 0 for k�3. If v = 0, ak(v) < 0 for k�3. If 0 < v < v0, then
there exists an integer K, such that ak(v) > 0 for k�K .

In this paper, for any complex number s with Re(s)�1, we obtain the following generalized Stirling
formula in a new approach (see [7, p. 253])

s! = √
2�s

(s

e

)s

e�(s) = √
2�
(s

e

)s

e�(s)/12s , (6)

where �(s) is an analytic function satisfying 0 < �(s) < 1 for real numbers s�1.
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