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Abstract

The famous Stirling’s formula says that I'(s + 1) = /2zs (s /) e’®) =/ 2n(s/e)* e’ /125 In this paper, we obtain
a novel convergent asymptotic series of y(s) and proved that 0(s) is increasing for s > 0.
© 2005 Elsevier B.V. All rights reserved.

MSC: 33B15; 05A16

Keywords: Gamma function; Asymptotic series; Stirling formula

1. Introduction

The Gamma function, one of the most famous functions in both mathematics and applied sciences,

oo

s!:F(s+1)=/ xSe ™ dx, s>0 (1)
0

can be analytically expanded to the whole complex plane excluding non-positive integers.
It is well-known that the Gamma function has the following famous Stirling asymptotic series
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(see [1, p. 167, 6, pp. 111-112])

1 1 N B,
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where B,, are Bernoulli numbers. However, series (2) is not convergent (see [1, p. 167]). In addition,
Lanczos obtained an efficient method for numerical calculation of the Gamma function (see [2]). In this
paper we obtained the following novel convergent asymptotic series.

Theorem 1. Let v>0 be a real number and s be a complex number such that Re(s) > 1, where Re(s)
denotes the real part of s. Then, we obtained

Ins!=41In2n+(s+21)Ins—s+ ), (3)

where
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ak(v):ﬂ / aq-20v—t)v+1—-¢t)---(v+k—1—1)dz.
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Set v =1 in (3), we obtain the Binet’s formula (see [7, p. 253])
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Furthermore, we generalize equality (3) to all complex numbers s excluding negative integers.

Corollary 1. For all complex numbers s but not negative integer, let m> — [Re(s)] be a non-negative
integer, where [x] is defined to be the greatest integer not exceeding x. Then, we have
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For the polynomials ay (v)’s introduced in Theorem 1, there holds the following results.

Theorem 2. For any v>0, a;(v) = ﬁ, and ar(v) = v/12. If v=vg =~ 0.146094, the positive root of
24003 + 60002 +270v — 53 =0, then ar(v) >0fork>3.Ifv=0,ar(v) <0fork>3.1f0 <v < v, then
there exists an integer K, such that ay(v) >0 for k> K.

In this paper, for any complex number s with Re(s)> 1, we obtain the following generalized Stirling
formula in a new approach (see [7, p. 253])

. \/2ns(£>se7(s) — V2 (f)se(’“)/‘zs, (6)
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where 0(s) is an analytic function satisfying O < 6(s) < 1 for real numbers s > 1.
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