

Available online at www.sciencedirect.com

JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS

Journal of Computational and Applied Mathematics 195 (2006) 134-154

www.elsevier.com/locate/cam

A new asymptotic series for the Gamma function $\stackrel{\scriptstyle \bigstar}{\sim}$

Xiquan Shi^{a,*}, Fengshan Liu^a, Minghan Hu^b

^aApplied Mathematics Research Center, Delaware State University, Dover, DE 19901, USA ^bNatural Language Processing Lab, Computer Science Department, Northeastern University, China

Received 15 August 2004

Abstract

The famous Stirling's formula says that $\Gamma(s+1) = \sqrt{2\pi s} (s/e)^s e^{\gamma(s)} = \sqrt{2\pi} (s/e)^s e^{\theta(s)/12s}$. In this paper, we obtain a novel convergent asymptotic series of $\gamma(s)$ and proved that $\theta(s)$ is increasing for s > 0. © 2005 Elsevier B.V. All rights reserved.

MSC: 33B15; 05A16

Keywords: Gamma function; Asymptotic series; Stirling formula

1. Introduction

The Gamma function, one of the most famous functions in both mathematics and applied sciences,

$$s! = \Gamma(s+1) = \int_0^\infty x^s e^{-x} \, \mathrm{d}x, \quad s > 0$$
⁽¹⁾

can be analytically expanded to the whole complex plane excluding non-positive integers. It is well-known that the Gamma function has the following famous Stirling asymptotic series

[☆] This paper is partly funded by ARO (DAAD19-03-1-0375) and Multimedia and Intelligent Software Technology Laboratory of Beijing University of Technology (KP0706200378).

^{*} Corresponding author. Tel.: +1 302 857 7052; fax: +1 302 857 7054.

E-mail addresses: xshi@desu.edu (X. Shi), fliu@desu.edu (F. Liu).

^{0377-0427/\$ -} see front matter © 2005 Elsevier B.V. All rights reserved. doi:10.1016/j.cam.2005.03.081

(see [1, p. 167, 6, pp. 111–112])

$$\ln(s-1)! = \frac{1}{2} \ln 2\pi + \left(s - \frac{1}{2}\right) \ln s - s + \sum_{n=1}^{\infty} (-1)^{n-1} \frac{B_n}{2n(2n-1)s^{2n-1}},$$
(2)

where B_m are Bernoulli numbers. However, series (2) is not convergent (see [1, p. 167]). In addition, Lanczos obtained an efficient method for numerical calculation of the Gamma function (see [2]). In this paper we obtained the following novel convergent asymptotic series.

Theorem 1. Let $v \ge 0$ be a real number and s be a complex number such that $Re(s) \ge 1$, where Re(s) denotes the real part of s. Then, we obtained

$$\ln s! = \frac{1}{2} \ln 2\pi + (s + \frac{1}{2}) \ln s - s + \gamma(s),$$
(3)

where

$$\gamma(s) = \sum_{k=1}^{\infty} \frac{a_k(v)}{(s+v)(s+v+1)\cdots(s+v+k-1)},$$

$$a_k(v) = \frac{1}{2k} \int_0^1 (1-2t)(v-t)(v+1-t)\cdots(v+k-1-t) \, \mathrm{d}t.$$

Set v = 1 in (3), we obtain the Binet's formula (see [7, p. 253])

$$\ln(s-1)! = \frac{1}{2} \ln 2\pi + \left(s - \frac{1}{2}\right) \ln s - s + \sum_{k=1}^{\infty} \frac{a_k(1)}{(s+1)(s+2)\cdots(s+k)}.$$
(4)

Furthermore, we generalize equality (3) to all complex numbers *s* excluding negative integers.

Corollary 1. For all complex numbers *s* but not negative integer, let $m \ge -[Re(s)]$ be a non-negative integer, where [x] is defined to be the greatest integer not exceeding *x*. Then, we have

$$\ln s! = \frac{1}{2} \ln 2\pi + \left(s + m + \frac{1}{2}\right) \ln(s + m + 1) - \sum_{p=1}^{m} \ln(s + p) - s - m - 1 + \gamma(s + m + 1).$$
(5)

For the polynomials $a_k(v)$'s introduced in Theorem 1, there holds the following results.

Theorem 2. For any $v \ge 0$, $a_1(v) = \frac{1}{12}$, and $a_2(v) = v/12$. If $v \ge v_0 \approx 0.146094$, the positive root of $240v^3 + 600v^2 + 270v - 53 = 0$, then $a_k(v) > 0$ for $k \ge 3$. If v = 0, $a_k(v) < 0$ for $k \ge 3$. If $0 < v < v_0$, then there exists an integer K, such that $a_k(v) > 0$ for $k \ge K$.

In this paper, for any complex number *s* with $Re(s) \ge 1$, we obtain the following generalized Stirling formula in a new approach (see [7, p. 253])

$$s! = \sqrt{2\pi s} \left(\frac{s}{e}\right)^s e^{\gamma(s)} = \sqrt{2\pi} \left(\frac{s}{e}\right)^s e^{\theta(s)/12s},\tag{6}$$

where $\theta(s)$ is an analytic function satisfying $0 < \theta(s) < 1$ for real numbers $s \ge 1$.

Download English Version:

https://daneshyari.com/en/article/4643171

Download Persian Version:

https://daneshyari.com/article/4643171

Daneshyari.com