A dual functional to the univariate B -spline ${ }^{\boldsymbol{\tau}}$
 Zhao Guohui*, Liu Xiuping, Su Zhixun
 Department of Applied Mathematics, Dalian University of Technology, Dalian, 116024, Liaoning, China

Received 15 August 2004; received in revised form 16 March 2005

Abstract

In this paper, dual functionals with local supports to the univariate B-splines are constructed by symmetrization, which are a linear combination of function values. © 2005 Elsevier B.V. All rights reserved.

Keywords: B-spline; Blossom; Dual basis; Polarization identity; Symmetrization

1. Introduction

Let $t:=\left(t_{i}\right)$ be nondecreasing with $t_{i}<t_{i+n+1}$ for all i. The B-spline N_{i} of order $n+1$ and knots $t_{i}, t_{i+1}, \ldots, t_{i+n+1}$ is defined by

$$
N_{i}(t)=\left(t_{i+n+1}-t_{i}\right)\left[t_{i}, \ldots, t_{i+n+1}\right](\cdot-t)_{+}^{n}
$$

Since $(x-t)^{n}=(x-t)_{+}^{n}+(-1)^{n}(t-x)_{+}^{n}, N_{i}(t)=(-1)^{n+1}\left(t_{i+n+1}-t_{i}\right)\left[t_{i}, \ldots, t_{i+n+1}\right](t-\cdot)_{+}^{n}$. For a polynomial $p(t)=a_{0}+a_{1} t+\cdots+a_{n} t^{n}=\sum_{k=0}^{n} a_{k} t^{k}$, its blossom is defined as follows:

$$
B(p)\left(t_{1}, \ldots, t_{n}\right)=\sum_{k=0}^{n} a_{k} \frac{t_{*}^{k}}{c_{n}^{k}},
$$

[^0]0377-0427/\$ - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.cam.2005.03.088
where c_{n}^{m} is a combinatory number and will be used hereafter and $t_{*}^{0}, t_{*}^{1}, \ldots, t_{*}^{n}$ are the elementary symmetric polynomials of $t_{0}, t_{1}, \ldots, t_{n}$

$$
\begin{aligned}
& t_{*}^{0}=1, t_{*}^{1}=t_{1}+\cdots+t_{n} \\
& t_{*}^{2}=t_{1} t_{2}+t_{1} t_{3}+\cdots+t_{n-1} t_{n}, \ldots, t_{*}^{n}=t_{1} t_{2} \cdots t_{n}
\end{aligned}
$$

In [3], the following polarization identity is given:

$$
B(p)\left(t_{1}, \ldots, t_{n}\right)=\frac{1}{n!} \sum_{S \subseteq\{1,2, \ldots, n\},|S|=k}(-1)^{n-k} k^{n} p\left(\frac{1}{k} \sum_{i \in S} t_{i}\right) .
$$

Marsden's identity plays an important role in the construction of approximation operators of splines. It is as follows: for any $k, n \in N$, and for any knot sequence $\left(t_{i}\right)_{i=-\infty}^{+\infty},(x-t)^{n}=\sum_{i} \omega_{i}(x) N_{i}(t), \omega_{i}(x)=$ $\prod_{k=i+1}^{i+n}\left(x-t_{k}\right)$, or

$$
p(t)=\sum_{k=0}^{n} a_{k} t^{k}=\sum_{i} B(p)\left(t_{i+1}, \ldots, t_{i+n}\right) N_{i}(t) .
$$

From Marsden's identity, the following well-known results with respect to de Boor-Fix functionals can easily be obtained [2].

Theorem 1.1. Any polynomial of degree at most n has the B-spline expansion

$$
p(t)=\sum_{i} \lambda_{i}(p) N_{i}(t)
$$

where

$$
\begin{aligned}
& \lambda_{i}(p)=\lambda_{i}(p, x)=\sum_{m=1}^{n+1}(-1)^{n-m+1} \psi_{i}^{(m-1)}(x) p^{(n-m+1)}(x) \quad \forall x \in R \\
& \psi_{i}(x)=\frac{\omega_{i}(x)}{n!} .
\end{aligned}
$$

Any spline $s(t)=\sum_{i} c_{i} N_{i}(t)$ has the B-spline expansion

$$
s(t)=\sum_{i} \lambda_{i}\left(s, \xi_{i}\right) N_{i}(t) \quad \forall \xi_{i} \in\left(t_{i}, t_{i+n+1}\right) .
$$

The latter de Boor-Fix functionals are dual functionals with local support to B-splines, i.e. supp $\lambda_{i} \subseteq$ $\left[t_{i}, t_{i+n+1}\right], \lambda_{i}\left(N_{j}\right)=\delta_{i j}$.

A direct construction of the functionals $\left(\lambda_{i}\right)$ dual to the B-spline basis $\left(N_{i}\right)$ may proceed as follows: given $\Delta=\left(t_{i}\right), t_{i} \in[a, b]$, let h_{i} be a function such that $h_{i} \in C^{n+1}[a ; b]$ and

$$
h_{i}\left(t_{j}\right)=0, \quad j \leqslant i+n ; \quad h_{i}\left(t_{j}\right)=\psi_{i}\left(t_{j}\right), \quad j \geqslant i+1,
$$

https://daneshyari.com/en/article/4643184

Download Persian Version:
https://daneshyari.com/article/4643184

Daneshyari.com

[^0]: This research was partially supported by Chinese NSF Tianyuan Foundation A0324655 and Chinese NSF 60275029.

 * Corresponding author.

 E-mail addresses: ghzhao@comgi.com (Z. Guohui), xpliu@comgi.com (L. Xiuping), zxsu@comgi.com (S. Zhixun).

