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Abstract

This paper considers the problem of interpolation on a semi-plane grid from a space of box-splines on the three-direction
mesh. Building on a new treatment of univariate semi-cardinal interpolation for natural cubic splines, the solution is obtained as
a Lagrange series with suitable localization and polynomial reproduction properties. It is proved that the extension of the natural
boundary conditions to box-spline semi-cardinal interpolation attains half of the approximation order of the cardinal case.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

A treatment of cardinal interpolation (i.e. interpolation at the set Z of integers) with univariate polynomial splines
was given by Schoenberg in [26], using the concept of B-spline functions. In [25,27], Schoenberg also considered the
related problem of semi-cardinal interpolation (i.e. interpolation at the set Z+ of non-negative integers) from a space of
univariate splines satisfying certain end-point conditions. The extension of cardinal interpolation to three-directional
bivariate box-splines interpolating data on the grid Z2 was obtained by de Boor et al. [10].

The present paper introduces the problem of interpolation on the semi-plane grid Z × Z+ from a space of bivari-
ate piecewise polynomial functions generated by the three-direction box-spline M whose direction matrix has every
multiplicity 2. This box-spline represents a genuine bivariate analog of the univariate cubic B-spline, and its utility for
approximation and computer aided design has been established early in several studies by Frederickson [12–14], Sabin
[20,21] Sablonnière [22–24], Chui and Wang [6].

The main idea of our bivariate extension of semi-cardinal interpolation to box-splines is to formulate certain automatic
boundary conditions in terms of finite difference equations for box-spline coefficients. As demonstrated by Chui et al.
[5], the presence of boundary conditions complicates the study of spline spaces even for simpler generating functions
than M. Bringing in Fourier methods from the theory of bi-dimensional Wiener-Hopf difference equations, the model
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of interpolation on a semiplane grid enables a full analysis of localization and polynomial reproduction properties of
the proposed box-spline scheme.

Our approach is first illustrated for the univariate case in Section 2, in which the space of one-dimensional semi-
cardinal cubic splines is regarded as a subspace of cardinal splines whose B-spline coefficients satisfy a system of
‘natural’ difference equations. The resulting construction is simpler than those obtained by Schoenberg in [25,27].
In Section 3, we propose a suitable extension of the natural boundary conditions to bivariate piecewise polynomials
generated by M. The corresponding semi-cardinal interpolation problem with box-splines is then solved by constructing
the set of fundamental functions and the associated Lagrange scheme. Our analysis is based on the explicit solution of
bi-dimensional difference equations of Wiener–Hopf type. In Section 4 we prove that the ‘natural’ semi-cardinal box-
spline scheme attains half of the approximation order of the corresponding cardinal scheme. The generalization of these
results to other box-splines requires significantly different methods of proof in order to avoid explicit computations.
This remains a problem for future research.

Note that a different multivariate extension of semi-cardinal interpolation was obtained in [2,3] for certain polyhar-
monic spline methods, using a Fourier transform treatment [1] of the univariate case. However, a complete analysis
establishing the approximation order of the polyharmonic semi-cardinal schemes has yet to be achieved.

Notation: For a given integer n, the set of integers smaller than or equal to n will be denoted by Z�n. Also,
Z�n := Z\Z�n−1, Z+ := Z�0, and R+ := [0, ∞).

2. Semi-cardinal interpolation with cubic B-splines

A cardinal cubic spline is a function s : R → C, such that

(i) s ∈ C2(R), and
(ii) s is a cubic polynomial on [k, k + 1], for any k ∈ Z.

The space of such functions will be denoted by S3. In [27], Schoenberg studies interpolation to data given on
Z+—referred to as ‘semi-cardinal interpolation’—from the linear space S+

3 of functions s : R → C satisfying
(i), as well as

(iii) s is a cubic polynomial on [k, k + 1], for any k ∈ Z+, and
(iv) s′′(x) = 0, for x ∈ (−∞, 0] (i.e. s is a linear polynomial on (−∞, 0]).
Since (iv) is known as a ‘natural’ end condition, an arbitrary element of S+

3 will be called a natural semi-cardinal
cubic spline.

Two methods are used in [27] in order to construct semi-cardinal interpolation from S+
3 and, more generally,

from similar odd-degree spline spaces. The first one [27, Chapter I] is based on a set of ‘fundamental functions’
{Lj : j ∈ Z+} ⊂ S+

3 satisfying

Lj (k) = �jk, j, k ∈ Z+, (2.1)

such that the corresponding Lagrange scheme

s(x) =
∞∑

j=0

yjLj (x), x ∈ R+, (2.2)

is absolutely and uniformly convergent on compact subsets of R+ for any data sequence {yj }∞j=0 of polynomial growth,
and s(j) = yj , j ∈ Z+. In turn, for each j ∈ Z+, the Lagrange function Lj is defined as a linear combination of the
shifted fundamental function for cardinal interpolation and a set of so-called eigenspline functions [27, (4.2)]. It can
be noted that this linear combination belongs to the cardinal space S3, but this fact is not explicitly used or mentioned
by Schoenberg.

The second method [27, Chapter II] is employed for a different class of data sequences and builds on the fact that,
if s ∈ S+

3 , then the second derivative s′′ is a cardinal spline of degree one, determined by its linear B-spline series.
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