

Available online at www.sciencedirect.com

JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS

Journal of Computational and Applied Mathematics 190 (2006) 270-286

www.elsevier.com/locate/cam

The ABC of hyper recursions

Amparo Gil^a, Javier Segura^{a,*}, Nico M. Temme^b

^aDepartamento de Matemáticas, Estadística y Computación, Univ. Cantabria, 39005-Santander, Spain ^bCWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

Received 30 September 2004

Dedicated to Roderick Wong on the occasion of his 60th birthday

Abstract

Each member of the family of Gauss hypergeometric functions

 $f_n = {}_2F_1(a + \varepsilon_1 n, b + \varepsilon_2 n; c + \varepsilon_3 n; z),$

where *a*, *b*, *c* and *z* do not depend on *n*, and $\varepsilon_j = 0, \pm 1$ (not all ε_j equal to zero) satisfies a second order linear difference equation of the form

 $A_n f_{n-1} + B_n f_n + C_n f_{n+1} = 0.$

Because of symmetry relations and functional relations for the Gauss functions, the set of 26 cases (for different ε_j values) can be reduced to a set of 5 basic forms of difference equations. In this paper the coefficients A_n , B_n and C_n of these basic forms are given. In addition, domains in the complex *z*-plane are given where a pair of minimal and dominant solutions of the difference equation have to be identified. The determination of such a pair asks for a detailed study of the asymptotic properties of the Gauss functions f_n for large values of *n*, and of other Gauss functions outside this group. This will be done in a later paper. © 2005 Elsevier B.V. All rights reserved.

© 2005 Eisevier D. v. An rights reser

MSC: 33C05; 39A11; 65D20

Keywords: Gauss hypergeometric functions; Recursion relations; Difference equations; Stability of recursion relations; Numerical evaluation of special functions

* Corresponding author.

E-mail addresses: amparo.gil@unican.es (A. Gil), javier.segura@unican.es (J. Segura), nicot@cwi.nl (N.M. Temme).

^{0377-0427/\$ -} see front matter © 2005 Elsevier B.V. All rights reserved. doi:10.1016/j.cam.2005.01.041

1. Introduction

The Gauss hypergeometric functions

$$f_n = {}_2F_1 \begin{pmatrix} a + \varepsilon_1 n, b + \varepsilon_2 n \\ c + \varepsilon_3 n \end{pmatrix}$$
(1.1)

where ε_i are integers, a, b, c and z do not depend on n, and

$${}_{2}F_{1}\left({a,b \atop c};z\right) = \sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n} n!} z^{n}, \quad |z| < 1$$
(1.2)

satisfy a second order linear difference equation (also called a three-term recurrence relation) of the form

$$A_n f_{n-1} + B_n f_n + C_n f_{n+1} = 0. ag{1.3}$$

For example, we have

$$(c-a)_{2}F_{1}\left(\begin{array}{c}a-1,b\\c\end{array};z\right) + (2a+-c-z(a-b))_{2}F_{1}\left(\begin{array}{c}a,b\\c\end{array};z\right) + a(z-1)_{2}F_{1}\left(\begin{array}{c}a+1,b\\c\end{array};z\right) = 0,$$
(1.4)

in which we can replace a with a + n. Other examples are given in [1, p. 558].

In this paper we consider the 26 recursion relations with respect to n for the cases

$$\varepsilon_j = 0, \pm 1, \quad j = 1, 2, 3, \quad \varepsilon_1^2 + \varepsilon_2^2 + \varepsilon_3^2 \neq 0,$$
(1.5)

and by using symmetry relations and functional relations for the Gauss functions we assign a set of 5 basic forms from which the remaining 21 cases can be obtained.

A solution f_n of the recurrence relation (1.3) is said to be *minimal* if there exists a linearly independent solution g_n , of the same recurrence relation such that $f_n/g_n \to 0$ as $n \to \infty$. In that case g_n is called a *dominant* solution. When a recurrence admits a minimal solution (unique up to a constant factor), this solution should be included in any numerically satisfactory pair of solutions of the recurrence. Given a solution of the recurrence relation, it is crucial to know the character of the solution (minimal, dominant or none of them) in order to apply the recurrence relation in a numerically stable way. Indeed, if f_n is minimal as $n \to +\infty$, forward recurrence (increasing n) is an ill conditioned process because small initial errors will generally dominate the recursive solution by introducing an initially small component of a dominant solution; backward recurrence is well conditioned in this case. The opposite situation takes place for dominant solutions.

For each basic form we give the coefficients A_n , B_n and C_n , and after computing limits of the ratios $\beta = \lim_{n\to\infty} (A_n/C_n)$ and $\alpha = \lim_{n\to\infty} (B_n/C_n)$ we determine the zeros t_1 and t_2 of the characteristic polynomial $t^2 + \alpha t + \beta$, and we give curves in the z-plane where $|t_1| = |t_2|$. These curves enclose domains where a pair $\{f_n, g_n\}$ of minimal and dominant solutions of the difference equation has to be identified. For each basic form, and for each domain in the z-plane defined by the boundary curves belonging to that form, we give a number of candidates of minimal and dominant solutions. The selection of a suitable pair $\{f_n, g_n\}$ of minimal and dominant solutions can be done after a detailed study of the asymptotic

271

Download English Version:

https://daneshyari.com/en/article/4643295

Download Persian Version:

https://daneshyari.com/article/4643295

Daneshyari.com