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Abstract

The numerical properties of a leap-frog pseudospectral scheme for the Schrödinger equation are analyzed. Stabil-
ity, second-order accuracy in time, and spectral accuracy in space are discussed considering the linear Schrödinger
equation with potential in a periodic setting. Further issues regarding phase error, gauge invariance, conservation
properties, and commutation relations are addressed. Results of numerical experiments are reported to demonstrate
the validity and limitations of the theoretical findings and for comparison with the well known Crank–Nicholson
finite difference scheme.
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1. Introduction

Two decades ago Kosloff and Kosloff [20] proposed a leap-frog pseudospectral (LFPS) method for
solving the Schrödinger equation in a periodic setting and, since then, the LFPS scheme has been success-
fully applied to various quantum computation problems; see [16,20,19,18,21,25] and references therein.
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As emphasized in the early paper [20], spectral methods [7,14] provide accurate numerical representations
of evolving quantum systems. In fact they allow—in contrast to, e.g., finite difference or finite element
methods [2,9,11,12,17,22,24]—the ‘spectrally accurate’ representation of specific properties of quantum
mechanical time evolution.

Nowadays, the study of quantum dynamics is experiencing a renewed intensive effort motivated by
nanoscience research [15], where investigation of quantum phenomena at atomic and molecular level
beyond macroscopic averaging is required. This research work requires accurate simulation of quantum
systems motivating the study of highly accurate discretization schemes like the one considered in this
paper. Besides accuracy, the spectral approach allows for exact representation of commutation relations
and preserves conservation laws. Its use is further motivated by recent regularity results concerning
solutions to the Schrödinger equation given in [6]. Also notice that typically quantum wave packets
[26] decay exponentially in classically forbidden regions of phase space and thus Fourier grids are most
appropriate to represent these wave functions.

Quantum systems are genuinely time-dependent requiring the implementation of efficient quantum
evolution operators. These operators should reflect time-reversal invariance and guarantee stable and ac-
curate solutions as is the case of LFPS methods. An additional feature of LFPS schemes regarding time
evolution is their immediate applicability to cases where time-dependent potentials are considered, in con-
trast to exact in time propagation schemes [4] or propagation schemes based on Tchebychev polynomials
expansion of the evolution operator [21,25]. Time-dependent Hamiltonians arise in, e.g., quantum optimal
control problems [5,15,23]. Furthermore, the LFPS approach allows a viable and simple generalization
to higher-order time propagators; see the class of extended LFPS schemes considered in [16].

Our present contribution to the development and application of LFPS methods is to provide stability
and accuracy estimates for the LFPS scheme applied to linear Schrödinger equations in a periodic multi-
dimensional setting.

For the purpose of our analysis we report, in the next section, results concerning existence and regularity
properties of solutions. While most of these results are well known, some of them are recent and provide
the appropriate analytical setting for analyzing the pseudospectral scheme considered in this paper. In
Section 3, the Fourier pseudospectral discretization method is illustrated and some related approximation
properties are reported, which will be used in the forthcoming Section 4 dedicated to the numerical analysis
of LFPS discretization of the Schrödinger equation. In this section stability of the LFPS scheme under
restriction of the time step size is discussed. Then, in the second part of this section, second-order accuracy
in time and spectral accuracy in space is proved. These results are stated in terms of discrete L2-norms and
therefore they do not provide immediate insight on the error in the phase occurring during time evolution.
Because the phase plays an important role in the physical interpretation of quantum phenomena, we
discuss in Section 5 phase error and the related problem of gauge invariance. The theoretical discussion
on the numerical properties of the LFPS scheme is completed in Section 6 where conservation laws and
commutation relations are considered.

In Section 7, results of numerical experiments are reported for the purpose of validating the theoretical
findings and for comparison of the LFPS scheme with the largely used Crank–Nicholson finite difference
scheme. The latter provides solutions which are second-order accurate in space and in time. However,
we show that second-order accuracy in space is not sufficient to provide correct wave-packet evolution.
Further results show that the LFPS scheme compares favorably in the presence of moderate discontinuous
potentials. Concerning the LFPS scheme, all results of experiments with free wave packets confirm second-
order accuracy in time and spectral accuracy in space. In particular, it is shown that errors due to time
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