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Abstract

In a previous paper we have determined a generic formula for the polynomial solution families of the well-known
differential equation of hypergeometric type

�(x)y′′
n(x) + �(x)y′

n(x) − �nyn(x) = 0.

In this paper, we give another such formula which enables us to present a generic formula for the values of monic
classical orthogonal polynomials at their boundary points of definition.
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1. Introduction

In previous work [3], we found a generic polynomial solution for the differential equation

�(x)y′′
n(x) + �(x)y′

n(x) − �nyn(x) = 0, (1)

where �(x) = ax2 + bx + c is a polynomial of degree at most 2, �(x) = dx + e is a polynomial of degree
at most 1 and �n = n(n − 1)a + nd is the eigenvalue parameter depending on n = 0, 1, 2, . . . .
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Since we will need this formula in this article, we state it here again. In the following theorem from

[3] P̄n

(
d e

a b c

∣∣∣∣∣x
)

denotes the monic polynomial solution of Eq. (1).

2. Theorem

The main differential equation

(ax2 + bx + c)y′′
n(x) + (dx + e)y′

n(x) − n((n − 1)a + d)yn(x) = 0; n ∈ Z+ (2)

has a monic polynomial solution which is represented as

P̄n

(
d e

a b c

∣∣∣∣ x
)

=
n∑

k=0

(
n

k

)
G

(n)
k (a, b, c, d, e)xk , (3)

where

G
(n)
k =

(
2a

b + √
b2 − 4ac

)k−n

2F1

(
k − n,

2ae − bd

2a
√

b2 − 4ac
+ 1 − d

2a
− n

∣∣∣∣
2 − d/a − 2n

2
√

b2 − 4ac

b + √
b2 − 4ac

)
.

(4)

Note that

2F1

(
� �

�

∣∣∣∣ x
)

=
∞∑

k=0

(�)k(�)k

(�)k

xk

k!
is the Gauss hypergeometric function [2] and (�)k = �(� + k)/�(�) denotes the Pochhammer symbol.

For a = 0 these identities can be adapted by limit considerations and give (3) with

G
(n)
k (0, b, c, d, e) = lim

a→0
G

(n)
k (a, b, c, d, e) =

(
b

c

)k−n

2F0

(
k − n,

cd − be

b2 + 1 − n

−

∣∣∣∣∣ b2

cd

)

(5)

which is valid for c, d �= 0, leading to

P̄n

(
d e

0 b c

∣∣∣∣ x
)

=
(

b

d

)n(
eb − cd

b2

)
n

1F1

( −n
eb − cd

b2

∣∣∣∣∣− d

b
x − cd

b2

)
. (6)

For a = b = 0 and d �= 0 we finally get

P̄n

(
d e

0 0 c

∣∣∣∣ x
)

= lim
a→0
b→0

P̄n

(
d e

a b c

∣∣∣∣ x
)

=
(
x + e

d

)n

2F0

(
−n

2
, −n − 1

2−

∣∣∣∣∣ 2cd

(dx + e)2

)
.

(7)

In this note, we intend to obtain another representation for the polynomial solution of the main equation
(2). To reach this goal, we use the general form of the Rodrigues representation of the polynomials

P̄n

(
d e

a b c

∣∣∣∣∣x
)

.



Download English Version:

https://daneshyari.com/en/article/4643379

Download Persian Version:

https://daneshyari.com/article/4643379

Daneshyari.com

https://daneshyari.com/en/article/4643379
https://daneshyari.com/article/4643379
https://daneshyari.com

