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Abstract

Codes for the numerical solution of two-point boundary value problems can now handle quite general problems in a
fairly routine and reliable manner. When faced with particularly challenging equations, such as singular perturbation
problems, the most efficient codes use a highly non-uniform grid in order to resolve the non-smooth parts of the
solution trajectory. This grid is usually constructed using either a pointwise local error estimate defined at the grid
points or else by using a local residual control. Similar error estimates are used to decide whether or not to accept a
solution. Such an approach is very effective in general providing that the problem to be solved is well conditioned.
However, if the problem is ill conditioned then such grid refinement algorithms may be inefficient because many
iterations may be required to reach a suitable mesh on which to compute the solution. Even worse, for ill conditioned
problems an inaccurate solution may be accepted even though the local error estimates may be perfectly satisfactory
in that they are less than a prescribed tolerance. The primary reason for this is, of course, that for ill conditioned
problems a small local error at each grid point may not produce a correspondingly small global error in the solution.
In view of this it could be argued that, when solving a two-point boundary value problem in cases where we have
no idea of its conditioning, we should provide an estimate of the condition number of the problem as well as the
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numerical solution. In this paper we consider some algorithms for estimating the condition number of boundary
value problems and show how this estimate can be used in the grid refinement algorithm.
© 2005 Elsevier B.V. All rights reserved.
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1. Mathematical preliminaries

Many methods have been proposed for the numerical solution of nonlinear systems of first order,
two-point boundary value problems of the form

dy

dx
= f (x, y), a�x�b, g(y(a), y(b)) = 0. (1)

Typically these methods attempt to control the error in the solution either by estimating the pointwise
local error at the mesh points[7,6,14,16]or else by controlling the residual, that is the amount by which
a continuous solution fails to satisfy the differential equation and the boundary conditions[9]. In both
cases the codes attempt to control an estimate of the local error on the assumption that the problem is
well conditioned so that if the local error in the solution is, in some sense small, then the global error will
also be small. This all works perfectly well when the differential equation is well conditioned. However
for stiff or ill conditioned problems, at least two major difficulties arise with such an approach. Firstly
there is the problem that a small local error in the accepted solution does not necessarily mean that this
solution has the required global accuracy. This can be demonstrated by a backward error analysis which
shows that the error in the solution is bounded by the product of the local error and the condition number
of the problem. Secondly, a mesh choosing algorithm which refines a mesh using a strategy based on
estimates of the local error may do a very poor job of putting the mesh points in the correct places.

The concept of a well conditioned problem is a very intuitive one. Broadly speaking, a problem is said
to be well conditioned if small changes in the functionsf andgappearing in (1) produce correspondingly
small changes in the solution obtained. In order to study the conditioning of (1), the standard approach is
to examine the behaviour of the solutions of (1) in the neighbourhood of an isolated solution. This leads
us to consider the linear equation

dy

dx
= A(x)y + q(x), a�x�b, Bay(a) + Bby(b) = �. (2)

If we assume that the boundary value problem (2) has a unique solutiony(x) then this solution is given
by

y(x) = Y (x)Q−1� +
∫ b

a

G(x, t)q(t)dt . (3)

HereY (x) is a fundamental solution of (2),G(x, t) is the Green’s function for (2) and the matrixQ,
which is related to the boundary conditions, is defined as

Q = BaY (a) + BbY (b).
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