Iterates of the infinitesimal generator and space-time harmonic polynomials of a Markov process

Pauline Barrieu ${ }^{\text {a }}$, Wim Schoutens ${ }^{\mathrm{b}, *}$
${ }^{\text {a }}$ London School of Economics, Statistics Department, Houghton Street, London WC2A 2AE, UK
${ }^{\mathrm{b}}$ K.U. Leuven, U.C.S., W. De Croylaan 54, 3001 Leuven, Belgium

Received 28 September 2004; received in revised form 23 March 2005

Abstract

We relate iterates of the infinitesimal generator of a Markov process to space-time harmonic functions. First, we develop the theory for a general Markov process and create a family a space-time martingales. Next, we investigate the special class of subordinators. Combinatorics results on space-time harmonic polynomials and generalized Stirling numbers are developed and interpreted from a probabilistic point of view. Finally, we introduce the notion of pairs of subordinators in duality, investigate the implications on the associated martingales and consider some explicit examples.

© 2005 Elsevier B.V. All rights reserved.
Keywords: Markov process; Lévy processes; Subordinators; Space-time harmonic polynomials; Martingales; Infinitesimal generator; Stirling numbers

1. Introduction

Fundamental martingale-additive functionals can be associated to a nice Markov process X_{t}. There are of the type

$$
M_{t}(f) \triangleq f\left(X_{t}\right)-f\left(X_{0}\right)-\int_{0}^{t} L_{\mathrm{e}}(f)\left(X_{s}\right) \mathrm{d} s
$$

[^0]0377-0427/\$ - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.cam.2005.04.014
where L_{e} is the (extended) infinitesimal generator of X and f is any measurable function belonging to the domain of L_{e}. These martingales generate, in the Kunita-Watanabe sense, the set of all the martingales of the Markov process.

In this paper, from the martingales $M_{t}(f)$, we create a family of similar space-time martingales obtained by using some formulae involving the iterates of the generator. We illustrate this construction in the case of the Brownian motion and the Poisson process in Section 2 of the paper. Section 3 is devoted to the case of subordinators. Results from combinatorics (see e.g. [26]) involving space-time harmonic polynomials and generalized Stirling numbers are developed and interpreted from a probabilistic point of view. Many connections between stochastic processes and combinatorics can be found in Pitman's Saint-Flour course [20]. Relations between stochastic processes and orthogonal polynomials are described in [10], [11] and [23].

2. Iterates of the infinitesimal generator and associated martingales

2.1. Definition of the extended infinitesimal generator L_{e}

In this section, we consider a general Markov process $X=\left(X_{t}, t \geqslant 0\right)$ taking values in the measurable state space (E, \mathscr{E}) and endowed with the laws $\left(P_{x}, x \in E\right)$ such that

$$
P_{x}\left(X_{0}=x\right)=1 \quad \text { for each } x .
$$

The notion of extended (infinitesimal) generator L_{e} associated with the Markov process X was first in Kunita $[14,15]$ and is quite convenient to exhibit important sets of martingales (under all P_{x} 's) associated to X. More precisely,

Definition 2.1. Let f be a measurable function on E such that there exists a function $g: E \rightarrow \mathbb{R}$ and

$$
M_{t}(f) \triangleq f\left(X_{t}\right)-f\left(X_{0}\right)-\int_{0}^{t} g\left(X_{s}\right) \mathrm{d} s
$$

is a $\left(P_{x}\right)$-martingale for all x, then f is said to belong to D_{e}, the domain of L_{e}, the operator defined on D_{e} as

$$
L_{\mathrm{e}}(f)=g
$$

Some assumptions are needed regarding the function g. In particular, g may be assumed to be bounded, but the weaker assumption

$$
\int_{0}^{t}\left|g\left(X_{s}\right)\right| \mathrm{d} s<\infty \quad P_{x} \text { a.s. for all } x \text { and } t .
$$

is sufficient.
This definition extends that of any "stronger" infinitesimal generator L (for more details, please refer for instance, to [17-19] or [9] in Chapter XV and its errata in the last two pages of [8]). In particular, the martingale $M_{t}(f)$ is introduced in formula (2) p. 130 in [17].

https://daneshyari.com/en/article/4643594

Download Persian Version:
https://daneshyari.com/article/4643594

Daneshyari.com

[^0]: * Corresponding author. Tel.: +3216322027 ; fax: +3216322831 .

 E-mail address: wim.schoutens@ wis.kuleuven.ac.be (W. Schoutens).

