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We prove a sharp quantitative version of Hales’ isoperimetric honeycomb theorem 
by exploiting a quantitative isoperimetric inequality for polygons and an improved 
convergence theorem for planar bubble clusters. Further applications include the 
description of isoperimetric tilings of the torus with respect to almost unit-area 
constraints or with respect to almost flat Riemannian metrics.
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r é s u m é

On démontre une version quantitative optimale du théorème d’isopérimétrie de 
Hales en exploitant une inégalité isopérimétrique quantitative sur les polygones et 
une convergence améliorée pour les amas planaires de bulles. Des conséquences 
incluent la description de pavages isopérimétriques du tore par des contraintes 
presque unitaires ou par des métriques riemanniennes presque plates.

© 2016 Elsevier Masson SAS. All rights reserved.

1. Introduction

The isoperimetric nature of the planar “honeycomb tiling” has been apparent since antiquity. Referring to 
[12, Section 15.1] for a brief historical account on this problem, we just recall here that Hales’ isoperimetric 
theorem, see inequality (1.2) below, gives a precise formulation of this intuitive idea. Our goal here is 
to strengthen Hales’ theorem into a quantitative statement, similarly to what has been done with other 
isoperimetric theorems in recent years (see, for example, [6,7]).

Following [11, Chapters 29–30], we work in the framework of sets of finite perimeter. A N -tiling E of a two-
dimensional torus T is a family E = {E(h)}Nh=1 of sets of finite perimeter in T such that |T \

⋃N
h=1 E(h)| = 0
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Fig. 1. Throughout the paper Ĥ denotes the unit-area regular hexagon in R2 depicted on the left and we set H = Ĥ/≈. Since 
|H| = 1, one has P (H) = 2(12)1/4, and the side-length of H is thus � = (12)1/4/3. On the right, the torus T (depicted in gray) 
and the reference unit-area tiling H of T (with α = β = 4). Notice that N = |T | = α β. The chambers of H are enumerated so 
that H(1) = H, {H(h)}β

h=1 is the bottom row of hexagons in T , and, more generally, if 0 ≤ k ≤ α − 1, then {H(h)}(k+1)β
h=1+kβ is the 

(k + 1)th row of hexagons in T .

and |E(h) ∩ E(k)| = 0 for every h, k ∈ N, h �= k. The volume of E is vol (E) = (|E(1)|, . . . , |E(N)|), and the 
relative perimeter of E in A ⊂ T is given by

P (E ;A) = 1
2

N∑
h=1

P (E(h);A) ,

(where P (E; A) = H1(A ∩ ∂E) if E is an open set with Lipschitz boundary), while the distance between 
two tilings E and F is defined as

d(E ,F) = 1
2

N∑
h=1

|E(h)ΔF(h)| .

We say that E is a unit-area tiling of T if |E(h)| = 1 for every h = 1, . . . , N . (In particular, in that case, 
it must be N = |T |.) Let Ĥ denote the reference unit-area hexagon in R2 depicted in Fig. 1, so that 
� = (12)1/4/3 is the side-length of Ĥ. Given α, β ∈ N, let us consider the torus T = Tα,β = R

2/≈, where

(x1, x2) ≈ (y1, y2) if and only if ∃h, k ∈ N s.t.
{

x1 = y1 + hβ
√

3 � ,
x2 = y2 + k α 3

2 � ,

and set H = Ĥ/≈ ⊂ T . In order to avoid degenerate situations, we shall always assume that

α is even and β ≥ 2 . (1.1)

In this way, H is a regular unit-area hexagon (i.e., the vertexes of Ĥ belong to six different equivalence 
classes) and one obtains a reference unit-area tiling H = {H(h)}Nh=1 of T consisting of α rows and β columns 
of regular hexagons by considering translations of H by (h 

√
3�, 3� k/2) (h, k ∈ Z); see again Fig. 1. Under 

this assumption, Hales’ isoperimetric honeycomb theorem asserts that

P (E) ≥ P (H) , (1.2)

whenever E is a unit-area tiling of T , and that P (E) = P (H) if and only if (up to a relabeling of the 
chambers of E) one has E(h) = v+H(h) for every h = 1, . . . , N and for some v = (t

√
3�, s�) with s, t ∈ [0, 1]. 

Our first main result strengthens this isoperimetric theorem in a sharp quantitative way.
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