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1. Introduction

If a function F defined on R?? is smooth and has bounded derivatives, the Weyl calculus associates with it
a pseudodifferential operator Op,”*'(F) which is bounded on L?(R%) and satisfies, for all f and g in S(R%),

(0P (F)f,g) = (2mh) / F(2)H(f. 9. 2)dZ, (1.1)
RQd

where Hy(f,g,-) is the Wigner function

Hyu(f,9,7) = /eit'<f<z + %)g(z — %)dt Z = (z,¢) € R¥, (1.2)
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For this form of the definition, see [15], [10] or [3, Chapter II, Proposition 14].

The different variants of Garding’s inequality prove that, if F' > 0, the operator Op W"yl(F) is roughly
> 0. More precisely, according to the classical Garding’s inequality (see [7] or [10]), the non-negativity of F
implies the existence of a positive constant C', independent of h, such that, for all sufficiently small h and
for all f in S(R?):

(Op ™" (F)f, £y = —Chl|f|[32za)- (1.3)

See [11] for other similar results. This inequality holds for systems of operators, whereas the more precise
Fefferman—Phong inequality [4] is valid only for scalar operators. Fefferman—Phong’s inequality states that,
under the same hypotheses as Garding’s inequality, one has, for all h in (0,1) and all f in S(R%):

(P (F)f, £) > —CR2)| 2 g (14)

See [13] for these semiclassical versions. Sometimes the non-negativity of F implies the exact
non-negativity of the operator, for example in the simple case when F' depends on x or on £ only. It is
possible, too, to apply Melin’s inequality [14]. To take only one example, let F' > 0 attain its minimum only
once, for a nondegenerate critical point. In this case (and in other analogous situations), Melin’s inequality

Weyl( ) for a sufficiently small h. See [2] or [9] for cases when the

ensures the exact non-negativity of Op
difference between F(z, &) and its minimum is equivalent to a power, greater than 2, of the distance between
(z,€) and the unique point where the minimum is attained.

In this article we are interested in the case when F' is radial. We assume that there exists a function @

defined on R such that

F(z,6) = oIz +[¢?) (x,6) e R*. (1.5)

Moreover, we suppose that ¢ is nondecreasing on [0, oo) and such that F is smooth, with bounded derivatives.
In this case, we aim at giving an explicit lower bound on the spectrum of the operator Op Weyl(F ). The
main result of this paper is the following theorem.

Theorem 1.1. Let F be a smooth function defined on R*?, bounded as well as all its derivatives. Assume
that F is of the form (1.5), where @ is a non-decreasing function defined on [0, 00).
Then for all f in S(RY),

(Op (B f) =+ [ D) Tt [|F]|32 ey (1.6)

SRS
0\8

Remarks. 1 — We do not need to assume that ¢ > 0 to ensure the non-negativity of the operator. The
non-negativity of the integral suffices.

2 — In the case when @ is not flat at the origin, assuming that @ is infinitely differentiable at the origin
(on the right side), let 7m > 1 be the smallest integer for which &™) (0) # 0. Then one can see that

SRS

/ B(t)edt = B(0) + B (K™ + O™ ).

3 — The result can be applied to symbols F' depending on the distance from another point (z,&g) for,
if 7F(z,€) = F(x 4 0,& + &) and Tf (u) = e (&o/M@=20) f(y — 24), then

(Op*(1F)f,q) = (Op, " (F)T f, Tg).
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