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In this paper we establish explicit lower bounds for pseudodifferential operators 
with a radial symbol. The proofs use classical Weyl calculus techniques and some 
useful, if not celebrated, properties of the Laguerre polynomials.
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r é s u m é

Dans cet article, on établit une borne inférieure pour les opérateurs pseudo-
différentiels avec un symbole radial. La démonstration utilise des techniques 
classiques du calcul de Weyl ainsi que des propriétés connues vérifiées par les 
polynômes de Laguerre.

© 2014 Elsevier Masson SAS. All rights reserved.

1. Introduction

If a function F defined on R2d is smooth and has bounded derivatives, the Weyl calculus associates with it 
a pseudodifferential operator OpWeyl

h (F ) which is bounded on L2(Rd) and satisfies, for all f and g in S(Rd),

〈
OpWeyl

h (F )f, g
〉

= (2πh)−d

∫
R2d

F (Z)Hh(f, g, Z)dZ, (1.1)

where Hh(f, g, ·) is the Wigner function

Hh(f, g, Z) =
∫
Rd

e−
i
h t·ζf

(
z + t

2

)
g

(
z − t

2

)
dt Z = (z, ζ) ∈ R

2d. (1.2)
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For this form of the definition, see [15], [10] or [3, Chapter II, Proposition 14].
The different variants of Gårding’s inequality prove that, if F ≥ 0, the operator OpWeyl

h (F ) is roughly 
≥ 0. More precisely, according to the classical Gårding’s inequality (see [7] or [10]), the non-negativity of F
implies the existence of a positive constant C, independent of h, such that, for all sufficiently small h and 
for all f in S(Rd):

〈
OpWeyl

h (F )f, f
〉
≥ −Ch‖f‖2

L2(Rd). (1.3)

See [11] for other similar results. This inequality holds for systems of operators, whereas the more precise 
Fefferman–Phong inequality [4] is valid only for scalar operators. Fefferman–Phong’s inequality states that, 
under the same hypotheses as Gårding’s inequality, one has, for all h in (0, 1) and all f in S(Rd):

〈
OpWeyl

h (F )f, f
〉
≥ −Ch2‖f‖2

L2(Rd). (1.4)

See [13] for these semiclassical versions. Sometimes the non-negativity of F implies the exact 
non-negativity of the operator, for example in the simple case when F depends on x or on ξ only. It is 
possible, too, to apply Melin’s inequality [14]. To take only one example, let F ≥ 0 attain its minimum only 
once, for a nondegenerate critical point. In this case (and in other analogous situations), Melin’s inequality 
ensures the exact non-negativity of OpWeyl

h (F ) for a sufficiently small h. See [2] or [9] for cases when the 
difference between F (x, ξ) and its minimum is equivalent to a power, greater than 2, of the distance between 
(x, ξ) and the unique point where the minimum is attained.

In this article we are interested in the case when F is radial. We assume that there exists a function Φ
defined on R such that

F (x, ξ) = Φ
(
|x|2 + |ξ|2

)
(x, ξ) ∈ R

2d. (1.5)

Moreover, we suppose that Φ is nondecreasing on [0, ∞) and such that F is smooth, with bounded derivatives.
In this case, we aim at giving an explicit lower bound on the spectrum of the operator OpWeyl

h (F ). The 
main result of this paper is the following theorem.

Theorem 1.1. Let F be a smooth function defined on R2d, bounded as well as all its derivatives. Assume 
that F is of the form (1.5), where Φ is a non-decreasing function defined on [0, ∞).

Then for all f in S(Rd),

〈
OpWeyl

h (F )f, f
〉
≥ 1

h

∞∫
0

Φ(t)e− t
h dt ‖f‖2

L2(Rd). (1.6)

Remarks. 1 – We do not need to assume that Φ ≥ 0 to ensure the non-negativity of the operator. The 
non-negativity of the integral suffices.

2 – In the case when Φ is not flat at the origin, assuming that Φ is infinitely differentiable at the origin 
(on the right side), let m ≥ 1 be the smallest integer for which Φ(m)(0) �= 0. Then one can see that

1
h

∞∫
0

Φ(t)e− t
h dt = Φ(0) + Φ(m)(0)hm + O

(
hm+1).

3 – The result can be applied to symbols F depending on the distance from another point (x0, ξ0) for, 
if τF (x, ξ) = F (x + x0, ξ + ξ0) and Tf(u) = ei(ξ0/h)(u−x0)f(u − x0), then

〈
OpWeyl

h (τF )f, g
〉

=
〈
OpWeyl

h (F )Tf, Tg
〉
.
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