Contents lists available at ScienceDirect

ELSEVIER

Journal de Mathématiques Pures et Appliquées

Affine embeddings and intersections of Cantor sets

MATHEMATIQUES

霐

De-Jun Feng^{a,*}, Wen Huang^b, Hui Rao^c

^a Department of Mathematics, The Chinese University of Hong Kong, Shatin, Hong Kong

^b Department of Mathematics, University of Science and Technology of China, Hefei, 230026, PR China

^c Department of Mathematics, Central China Normal University, Wuhan, 430070, PR China

ARTICLE INFO

Article history: Received 6 August 2013 Available online 19 March 2014

MSC: 37D35 37C45 28A75

 $\label{eq:constraint} \begin{array}{l} Keywords:\\ C^1\text{-embedding}\\ \text{Affine embedding}\\ \text{Self-similar sets}\\ \text{Central Cantor sets} \end{array}$

ABSTRACT

Let $E, F \subset \mathbb{R}^d$ be two self-similar sets. Under mild conditions, we show that F can be C^1 -embedded into E if and only if it can be affinely embedded into E; furthermore if F cannot be affinely embedded into E, then the Hausdorff dimension of the intersection $E \cap f(F)$ is strictly less than that of F for any C^1 -diffeomorphism f on \mathbb{R}^d . Under certain circumstances, we prove the logarithmic commensurability between the contraction ratios of E and F if F can be affinely embedded into E. As an application, we show that $\dim_H E \cap f(F) < \min\{\dim_H E, \dim_H F\}$ when E is any Cantor-p set and F any Cantor-q set, where $p, q \ge 2$ are two integers with $\log p/\log q \notin \mathbb{Q}$. This is related to a conjecture of Furstenberg about the intersections of Cantor sets.

@ 2014 Elsevier Masson SAS. All rights reserved.

RÉSUMÉ

Soit E et F deux ensembles auto-similaires dans \mathbb{R}^d . Sous des hypothèses raisonnables, on montre qu'il existe un plongement C^1 de F dans E si et seulement s'il existe un tel plongement affine; de plus, s'il n'existe pas de plongement affine de F dans E, alors pour tout difféomorphisme C^1 de \mathbb{R}^d la dimension de Hausdorff de l'intersection $E \cap f(F)$ est strictement inférieure à celle de F. Dans certains cas, on montre que les logarithmes des facteurs de contraction de E et F sont commensurables lorsqu'il existe un plongement affine de F dans E. En application, on montre que dim_H $E \cap f(F) < \min\{\dim_H E, \dim_H F\}$ quand E est un p-ensemble de Cantor et F est un q-ensemble de Cantor, où p et q sont des nombres entiers ≥ 2 tels que $\log p/\log q \notin \mathbb{Q}$. Ceci est relié à une conjecture de Furstenberg sur les intersections d'ensembles de Cantor.

© 2014 Elsevier Masson SAS. All rights reserved.

http://dx.doi.org/10.1016/j.matpur.2014.03.003

^{*} Corresponding author.

E-mail addresses: djfeng@math.cuhk.edu.hk (D.-J. Feng), wenh@mail.ustc.edu.cn (W. Huang), hrao@mail.ccnu.edu.cn (H. Rao).

^{0021-7824/© 2014} Elsevier Masson SAS. All rights reserved.

1. Introduction

Let A, B be two subsets of \mathbb{R}^d . We say that A can be affinely embedded into B if $f(A) \subseteq B$ for some affine map $f : \mathbb{R}^d \to \mathbb{R}^d$ of the form f(x) = Mx + a, where M is an invertible $d \times d$ matrix and $a \in \mathbb{R}^d$. Similarly, we say that A can be C^1 -embedded into B if $f(A) \subseteq B$ for some C^1 -diffeomorphism f on \mathbb{R}^d .

The objective of this paper is to study the relation between C^1 -embeddings and affine embeddings for self-similar sets, and to study the necessary conditions under which one self-similar set can be affinely embedded or C^1 -embedded into another self-similar set. These questions are motivated from some studies in related areas, including the classification of self-similar subsets of Cantor sets [6,7], the characterization of Lipschitz equivalence and Lipschitz embedding of Cantor sets [5,2], as well as the study of intersections of Cantor sets [8,3] and the geometric rigidity of $\times m$ invariant measures [10].

Before stating our results, we recall some terminologies about self-similar sets. Let $\Phi = \{\phi_i\}_{i=1}^{\ell}$ be a finite family of contractive mappings on \mathbb{R}^d . Following Barnsley [1], we say that Φ is an *iterated function* system (IFS) on \mathbb{R}^d . Hutchinson [13] showed that there is a unique non-empty compact set $K \subset \mathbb{R}^d$, called the *attractor* of Φ , such that

$$K = \bigcup_{i=1}^{\ell} \phi_i(K).$$

Correspondingly, Φ is called a generating IFS of K. One notices that K is a singleton if and only if the mappings ϕ_i , $1 \leq i \leq \ell$, have the same fixed point. We say that Φ satisfies the open set condition (OSC) if there exists a non-empty bounded open set $V \subset \mathbb{R}^d$ such that $\phi_i(V)$, $1 \leq i \leq \ell$, are pairwise disjoint subsets of V. Similarly, we say that Φ satisfies the strong separation condition (SC) if $\phi_i(K)$ are pairwise disjoint subsets of K. The SC always implies the OSC.

A mapping $\phi : \mathbb{R}^d \to \mathbb{R}^d$ is called a *similitude* if ϕ is of the form $\phi(x) = \alpha R(x) + a$ for $x \in \mathbb{R}^d$, where $\alpha > 0$, R is an orthogonal transformation and $a \in \mathbb{R}^d$. When all maps in an IFS Φ are similitudes, the attractor K of Φ is called a *self-similar* set; in this case, the *self-similar dimension* of K is defined as the unique positive number s so that $\sum_{i=1}^{\ell} \rho_i^s = 1$, where ρ_i denotes the contraction ratio of ϕ_i . It is well known [13] that $\dim_H K = s$ if Φ consists of similitudes and satisfies the OSC, here \dim_H denotes the Hausdorff dimension (cf. [4]); the condition of OSC can be further replaced by some significantly weaker separation condition in the case d = 1 and $s \leq 1$ [11].

In the remaining part of this section, we assume that $\Phi = \{\phi_i\}_{i=1}^{\ell}$ and $\Psi = \{\psi_j\}_{j=1}^{m}$ are two families of contractive similitudes of \mathbb{R}^d of the form

$$\phi_i(x) = \alpha_i R_i(x) + a_i, \qquad \psi_j(x) = \beta_j O_j(x) + b_j, \quad i = 1, \dots, \ell, \ j = 1, \dots, m, \tag{1.1}$$

where $0 < \alpha_i, \beta_j < 1, a_i, b_j \in \mathbb{R}^d$ and R_i, O_j are orthogonal transformations on \mathbb{R}^d . Let E, F be the attractors of Φ and Ψ , respectively. To avoid triviality, we always assume that E, F are not singletons in this paper.

For any real invertible $d \times d$ matrix M, let $\kappa(M)$ denote the condition number of M, that is,

$$\kappa(M) = \max\left\{\frac{|Mu|}{|Mv|}: u, v \in \mathbb{R}^d \text{ with } |u| = |v| = 1\right\}.$$

The first result of this paper is the following:

Theorem 1.1. Assume that Φ satisfies the OSC, and the Hausdorff dimension of F equals its self-similar dimension. Then F can be C^1 -embedded into E if and only if F can be affinely embedded into E. Furthermore if F cannot be affinely embedded into E, then

Download English Version:

https://daneshyari.com/en/article/4643836

Download Persian Version:

https://daneshyari.com/article/4643836

Daneshyari.com