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Using uniform global Carleman estimates for semi-discrete elliptic and hyperbolic 
equations, we study Lipschitz and logarithmic stability for the inverse problem of 
recovering a potential in a semi-discrete wave equation, discretized by finite differ-
ences in a 2-d uniform mesh, from boundary or internal measurements. The discrete 
stability results, when compared with their continuous counterparts, include new 
terms depending on the discretization parameter h. From these stability results, we 
design a numerical method to compute convergent approximations of the continuous 
potential.
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r é s u m é

A partir d’inégalités de Carleman pour des équations aux dérivées partielles 
dicrétisées elliptiques et hyperboliques, on étudie la stabilité Lipschitz et logarith-
mique du problème inverse de détermination du potentiel dans une équation des 
ondes semidiscrétisée, par un schéma aux différences finies sur un maillage 2-d uni-
forme, à partir de mesures internes ou frontières. Quand ils sont comparés avec leur 
contrepartie continue, les résultats de stabilité dans le cadre discret contiennent de 
nouveaux termes dépendants du pas h du maillage utilisé. C’est à partir de ces résul-
tats qu’on donne une méthode numérique de calcul d’approximations convergentes 
du potentiel continu.
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1. Introduction

The goal of this article is to study the convergence of an inverse problem for the wave equation, which 
consists in recovering a potential through the knowledge of the flux of the solution on a part of the boundary. 
This article follows the previous work [2] on that precise topic in the 1-d case.

1.1. The continuous inverse problem

Setting. We will first present the main features of the continuous inverse problem we consider in this article. 
Let Ω be a smooth bounded domain of Rd, and for T > 0, consider the wave equation:⎧⎪⎨⎪⎩

∂tty − Δy + qy = f, in (0, T ) ×Ω,

y = f∂ , on (0, T ) × ∂Ω,

y(0, ·) = y0, ∂ty(0, ·) = y1, in Ω.

(1.1)

Here, y = y(t, x) is the amplitude of the waves, (y0, y1) is the initial datum, q = q(x) is a potential, f is a 
distributed source term and f∂ is a boundary source term.

In the following, we explicitly write down the dependence of the function y solution of (1.1) in terms of q
by denoting it y[q] and similarly for the other quantities depending on q.

We assume that the initial datum (y0, y1) and the source terms f and f∂ are known. We also assume the 
additional knowledge of the flux

M [q] = ∂νy[q] on (0, T ) × Γ0, (1.2)

where Γ0 is a non-empty open subset of the boundary ∂Ω and ν is the unit outward normal vector on ∂Ω. 
Note that for this map to be well-defined, we need to give a precise functional setting: for instance, we may 
assume (y0, y1) ∈ H1(Ω) × L2(Ω), f ∈ L1((0, T ); L2(Ω)), f∂ ∈ H1((0, T ) × ∂Ω) and y0|∂Ω = f∂(t = 0) so 
that M is well-defined for all q ∈ L∞(Ω) and takes value in L2((0, T ) × ∂Ω), see e.g. [27].

This article is about the recovering the potential q from M [q]. As usual when considering inverse problems, 
this topic can be decomposed into the following questions:

• Uniqueness: Does the measurement M [q] uniquely determine the potential q?
• Stability: Given two measurements M [qa] and M [qb] which are close, are the corresponding potentials 

qa and qb close?
• Reconstruction: Given a measurement M [q], can we design an algorithm to recover the potential q?

Concerning the precise inverse problem we are interested in, the uniqueness result is due to [11] and we shall 
focus on the stability properties of the inverse problem (1.1). The question of stability has attracted a lot 
of attention and is usually based on Carleman estimates. There are mainly two types of results: Lipschitz 
stability results, see [25,31,32,38,22,1,23,3,35], provided the observation is done on a sufficiently large part 
of the boundary and the time is large enough, or logarithmic stability results [4,6] when the observation set 
does not satisfy any geometric requirement. We also mention the works [5,12] for logarithmic stability of 
inverse problems for other related equations.

Below we present more precisely these two type of results, since our main goal will be to discuss discrete 
counterparts in these two cases.

Lipschitz stability results under the Gamma-conditions. Getting Lipschitz stability results for the continuous 
inverse problem usually requires the following assumptions, originally due to [18]. We say that the triplet 
(Ω, Γ, T ) satisfy the Gamma-conditions (see [29]) if
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